- 【信息系统项目管理师】高分论文:论信息系统项目的整合管理(移动警务通系统)
数据知道
软考高级高项备考高项信息系统项目管理师备考信息系统项目管理师项目整合管理
更多内容请见:备考信息系统项目管理师-专栏介绍和目录文章目录正文1、制定项目章程2、制定项目管理计划3、指导与管理项目工作4、管理项目知识5、监控项目工作6、实施整体变更控制7、结束项目或阶段正文2022年2月,我有幸作为项目经理参加了“某市公安移动警务通系统”项目的建设工作,该项目投资675万元,建设工期为1年,该项目是公安部“金盾工程”重点项目。该项目充分利用公安信息资源,以移动通信网络为依托
- 【AI日记】24.10.30 做项目的一些前期准备工作
AI完全体
AI日记人工智能机器学习自然语言处理langchain日记读书学习资源
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】工作工作1内容:看AI大佬访谈B站地址:SamAltman最新5月播客长篇访谈|@All-In播客2024.5.11时间:1.5小时评估:继续工作2内容:思考如何开始自己的RAG项目时间:0.5小时决定:采用搭积木的方法来做自己的RAG项目。从最基础的开始,不断学习各种RAG和NLP相关的技术,然后不断加入到自己的项目中,而不
- 计算机视觉如何快速入门?
Frunze软件开发
日常问题回答开发语言计算机视觉工业异常检测论文
目录1.明确研究方向2.学习基础知识3.掌握核心算法4.实践项目5.阅读文献6.复现经典论文7.改进与创新总结计算机视觉(ComputerVision)是一个复杂且广泛的领域,尤其是工业异常检测这种特定方向,需要结合理论知识和实践技能。以下是一些具体的、可操作的建议,也是个人实际路径的一个总结,希望可以帮助到你快速入门并完成一篇论文。1.明确研究方向-工业异常检测的核心是识别图像或视频中的异常区域
- [1138]基于JAVA的安全监管网络人员信息智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java网络开发语言课程设计毕业设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的安全监管网络人员信息智慧管理系统的设计与实现指导老师(一)选题的背景和意义选题背景与意义:随着信息技术的飞速发展和大数据时代的到来,安全监管网络人员信息管理面临着前所未有的挑战与机遇。当前,执法人员、监督员以及各类从业人员的信息档案管理工作日益繁重,传统的人工管理模式效率低下、易出错且难以满足实时更新、精准查询的需求。特别是在复杂的执法环
- [0750]基于JAVA的卫生监管智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java人工智能开发语言课程设计毕业设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的卫生监管智慧管理系统的设计与实现指导老师(一)选题的背景和意义在当前我国卫生监管体系快速发展的背景下,信息化、智能化已成为提升监管效能和公共服务质量的关键手段。随着各类医疗卫生机构数量的增长和服务范围的拓宽,传统的管理模式已难以满足日益复杂的监管需求,尤其是在数据处理、权限控制、事件响应、知识更新、培训考核、任务调度、记录追踪等方面存在明
- Node.js的REST简介以及express框架
2764150442
restfulnode.jsmysql
1.REST简介REST是指表述性状态传递(RepresentationalStateTransfer,简称REST),是RoyFielding博士在2000年他的博士论文中提出来的一种软件架构风格。表述性状态转移是一组架构约束条件和原则。满足这些约束条件和原则的应用程序或设计就是RESTful。需要注意的是,REST是设计风格而不是标准。REST通常基于使用HTTP、URI和XML(标准通用标记
- Python的那些事第二十三篇:Express(Node.js)与 Python:一场跨语言的浪漫邂逅
暮雨哀尘
Python的那些事linuxpythonnode.jsexpress服务器开发语言web开发
摘要在当今的编程世界里,Node.js和Python像是两个性格迥异的超级英雄,一个以速度和灵活性著称,另一个则以强大和优雅闻名。本文将探讨如何通过Express框架将Node.js和Python结合起来,打造出一个高效、有趣的Web应用。我们将通过一系列幽默风趣的实例和表格,展示这种跨语言合作的无限可能。如果你厌倦了单调的技术论文,那么这篇论文绝对能让你眼前一亮!1.引言:当Node.js遇上P
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 【论文精读】Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
EEPI
自动驾驶人工智能论文阅读深度学习目标检测
1背景团队:地平线时间:代码:简介:这篇论文是Sparse4D的续作,区别主要在于特征时序融合上,新版提高了运算效率。后续端到端SparseDrive的基本框架与这篇基本类似。2存在的问题2.1其他稀疏3D检测的问题PETR是query-based方法,但是为了实现特征融合,进行了全局注意力机制,导致高计算量。2.2Sparse4Dv1的问题Sparse4Dv1的时序特征融合hierarchyfu
- 每周论文精读05-A2J:AnchortoJointRegressionNetwork for 3D ArticulatedPoseEstimation from a SingleDepthImage
Jason_____Wang
精读笔记python计算机视觉卷积手势识别深度学习
https://download.csdn.net/download/Jason_____Wang/16502249论文精读——A2J:Anchor-to-JointRegressionNetworkfor3DArticulatedPoseEstimationfromaSingleDepthImage标题比较长,已经打不完了。。所以题目格式有些变形,望谅解。上周尝试做了一下代码复现的方向,因为生活
- 基于ESP-NOW协议的温室通风监控系统
神一样的老师
物联网论文阅读分享物联网
论文标题中文标题:基于ESP-NOW协议的温室通风监控系统英文标题:SistemademonitoreodeventilacióneninvernaderoconprotocoloESP-NOW作者信息HéctorDeSosaa,*,GermánA.Xandera,LuisA.Urbania,AlejandroG.MaxitaaUniversidadNacionaldeMisiones,Facul
- MobileNetV4(2024 ECCV)
刘若里
论文阅读学习网络计算机视觉笔记
论文标题MobileNetV4:UniversalModelsfortheMobileEcosystem论文作者DanfengQin,ChasLeichner,ManolisDelakis,MarcoFornoni,ShixinLuo,FanYang,WeijunWang,ColbyBanbury,ChengxiYe,BerkinAkin,VaibhavAggarwal,TenghuiZhu,Da
- 【300套】基于Springboot+Vue的Java毕业设计项目(附源码+演示视频+LW)
程序猿老A(专注毕业设计)
基于Java的毕业设计javaspringboot课程设计
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。今天给大家分享300+的Java毕业设计,基于Springboot+vue框架,这些项目都经过精心挑选,涵盖了不同的实战主题和用例,可做毕业设计和课程设计参考。✍️除了源码,对于大部分项目实现的功能都有相应的介绍,并且配有演示视频,方便大家根据自己的需要择优下载学习。另外如有定制需求或者想要相对应的论文参考,文末可以十我VX联系。后续还会持续
- 活动集锦 | 英码科技积极参与行业盛会,AI赋能城市数字化转型
英码科技
人工智能科技大数据
在当今数字经济时代,城市全域数字化转型已经成为提升城市管理效能、优化资源配置、推动经济发展的重要手段。英码科技始终致力于为企业打造高效、低成本的行业应用方案,助力企业实现数字化转型。近日,英码科技受邀参加了多场行业展示活动,展示了其在数字化转型方面的成果和技术。▎2024新型智慧城市建设成果展览会6月5日至6月7日,以“数字经济赋能,洞见未来城市”为主题的2024新型智慧城市建设成果博览会在广州琶
- Mooncake:kimi后端推理服务的架构设计
风生水气
大模型应用技术栈大模型人工智能ai语言模型后端
前言本文依托论文《Mooncake:AKVCache-centricDisaggregatedArchitectureforLLMServing》来讲解kimi的后端服务架构Mooncake,并按照自己的思路来梳理论文中的一些关键信息。背景服务端面临的问题随着大模型技术越来越强,很多应用都是以Maas(ModelasaService)的方式对外提供服务,服务端的能力受模型的能力约束。对于C端应用来
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- TPAMI 2024 | SSR-2D: 从2D图像进行语义3D场景重建
小白学视觉
论文解读IEEETPAMI深度学习顶刊论文论文解读TPAMI
论文信息题目:SSR-2D:Semantic3DSceneReconstructionFrom2DImagesSSR-2D:从2D图像进行语义3D场景重建作者:JunwenHuang,AlexeyArtemov,YujinChen,ShuaifengZhi,KaiXu,andMatthiasNießner论文创新点首次提出了一种基于深度学习的方法,能够在不使用任何3D标注的情况下,从不完整的RGB
- 【AI论文】随机鹦鹉在大型语言模型(LLM)之肩:物理概念理解的总结性评估
东临碣石82
人工智能语言模型自然语言处理
摘要:我们以系统的方式探讨了一个被广泛提及的问题:大型语言模型(LLM)真的理解它们所说的话吗?这与人们更为熟悉的术语“随机鹦鹉”息息相关。为此,我们提出了一项总结性评估,针对一项精心设计的物理概念理解任务——PhysiCo。我们的任务通过使用网格格式的输入来抽象描述物理现象,从而缓解了记忆问题。这些网格代表了不同层次的理解,从核心现象、应用实例到网格世界中其他抽象模式的类比。对我们任务的全面研究
- 「重磅」Sci.Robot最新封面:由多种人体肌肉组织驱动的生物混合手,人机融合取得新突破
天机️灵韵
具身智能人工智能硬件设备机器人生物信息学具身智能人工智能
ScienceRobotics查看原文:https://www.science.org/doi/10.1126/scirobotics.adr5512论文解析:《Biohybridhandactuatedbymultiplehumanmuscletissues》研究背景与目标本研究提出了一种基于生物混合技术的机械手,通过集成多个人体骨骼肌组织(MuMuTA,Multi-MaterialMulti-
- 2025年美赛数学建模 ICM 问题 F: 网络安全强大吗?
深度学习&目标检测实战项目
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025美赛F题网络安全强大吗思路代码F题
全部都是公开资料,不代写论文,请勿盲目订阅)2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpto1pro分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgptpro会员,会充分利用chatgpto1
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- python flask django在线投票系统 md14i
专注分享bishe530
pythonflaskdjango
文章目录具体实现截图项目技术介绍论文写作思路核心代码部分展示可定制开发功能创新亮点django项目示例源码/演示视频获取方式具体实现截图项目技术介绍Python版本:python3.7以上框架支持:flask/django开发软件:PyCharm数据库:mysql数据库工具:Navicat浏览器:谷歌浏览器(PycharmFlaskDjangoVuemysql)论文写作思路第一部分绪论,主要介绍所
- 人工智能推理模型(S1-32B)超越DeepSeek?
deepdata_cn
垂域模型人工智能人工智能大语言模型
S1模型是由斯坦福大学和华盛顿大学的研究团队在李飞飞教授的领衔下开发的人工智能推理模型。从2000年李飞飞进入加州理工学院攻读研究生起,就一直从事人工智能研究,在计算机视觉领域创立了拥有1500万张图片的ImageNet数据库,为人工智能计算机视觉研究奠定了基础,也积累了深厚的人工智能技术理论和实践经验。论文地址:https://arxiv.org/pdf/2501.19393一、发展过程模型采用
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 文献管理详解-ChatGPT4o作答
部分分式
笔记
文献管理详解文献管理是学术研究中的重要环节,尤其是在撰写论文、报告或项目时,研究者往往需要处理大量的参考文献。一个科学高效的文献管理流程,能够显著提升研究工作的效率和质量。以下从文献管理的意义、基本流程、常用工具、技巧与策略以及常见问题等方面详细讲解文献管理。1.文献管理的意义1.1提高效率避免重复查找文献,节约时间。快速检索需要的文献和数据,尤其是在文献量较大的情况下。1.2提升写作质量在论文写
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分