PyTorch 是基于以下两个目的而打造的python科学计算框架:
Numpy 提供了一个 n 维数组对象,以及许多用于操纵这些数组的函数。 Numpy 是用于科学计算的通用框架。 它对计算图,深度学习或梯度一无所知。 但是,通过使用 numpy 操作手动实现网络的前向和后向传递,我们可以轻松地使用 numpy 使三阶多项式适合正弦函数:
# -*- coding: utf-8 -*-
import numpy as np
import math
# Create random input and output data
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)
# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
# y = a + b x + c x^2 + d x^3
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = np.square(y_pred - y).sum()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')
张量如同数组和矩阵一样, 是一种特殊的数据结构。在PyTorch
中, 神经网络的输入、输出以及网络的参数等数据, 都是使用张量来进行描述。张量的使用和Numpy
中的ndarrays
很类似, 区别在于张量可以在GPU
或其它专用硬件上运行, 这样可以得到更快的加速效果。
在这里,我们使用 PyTorch 张量将三阶多项式拟合为正弦函数。 像上面的 numpy 示例一样,我们需要手动实现通过网络的正向和反向传递:
# -*- coding: utf-8 -*-
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
直接生成张量 ,由原始数据直接生成张量, 张量类型由原始数据类型决定。
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
通过Numpy数组来生成张量
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
通过已有的张量来生成新的张量,新的张量将继承已有张量的数据属性(结构、类型), 也可以重新指定新的数据类型。
x_ones = torch.ones_like(x_data) # 保留 x_data 的属性
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # 重写 x_data 的数据类型
int -> float
print(f"Random Tensor: \n {x_rand} \n")
通过指定数据维度来生成张量
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
从张量属性我们可以得到张量的维数、数据类型以及它们所存储的设备(CPU或GPU)。
tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
有超过100种张量相关的运算操作, 例如转置、索引、切片、数学运算、线性代数、随机采样等。更多的运算可以在这里查看。
所有这些运算都可以在GPU上运行(相对于CPU来说可以达到更高的运算速度)。如果你使用的是Google的Colab环境, 可以通过 Edit > Notebook Settings
来分配一个GPU使用。
# 判断当前环境GPU是否可用, 然后将tensor导入GPU内运行
if torch.cuda.is_available():
tensor = tensor.to('cuda')
1. 张量的索引和切片
tensor = torch.ones(4, 4)
tensor[:,1] = 0 # 将第1列(从0开始)的数据全部赋值为0
print(tensor)
2. 张量的拼接
你可以通过torch.cat
方法将一组张量按照指定的维度进行拼接, 也可以参考torch.stack
方法。这个方法也可以实现拼接操作, 但和torch.cat
稍微有点不同。
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
3. 张量的乘积和矩阵乘法
# 逐个元素相乘结果
print(f"tensor.mul(tensor): \n {tensor.mul(tensor)} \n")
# 等价写法:
print(f"tensor * tensor: \n {tensor * tensor}")
4. 自动赋值运算
自动赋值运算通常在方法后有 _
作为后缀, 例如: x.copy_(y)
, x.t_()
操作会改变 x
的取值。
print(tensor, "\n")
tensor.add_(5)
print(tensor)
张量和Numpy array
数组在CPU上可以共用一块内存区域, 改变其中一个另一个也会随之改变。
1. 由张量变换为Numpy array数组
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
2. 由Numpy array数组转为张量
n = np.ones(5)
t = torch.from_numpy(n)
是 PyTorch 的自动差分引擎,可为神经网络训练提供支持。使用 Autograd 时,网络的正向传播将定义计算图; 图中的节点为张量,边为从输入张量产生输出张量的函数。 然后通过该图进行反向传播,可以轻松计算梯度。每个张量代表计算图中的一个节点。 如果x
是具有x.requires_grad=True
的张量,则x.grad
是另一个张量,其保持x
相对于某个标量值的梯度。
这里,我们使用 PyTorch 张量和 Autograd 来实现我们的正弦波与三阶多项式示例; 现在我们不再需要通过网络手动实现反向传递:
# -*- coding: utf-8 -*-
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
d = torch.randn((), device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y using operations on Tensors.
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss using operations on Tensors.
# Now loss is a Tensor of shape (1,)
# loss.item() gets the scalar value held in the loss.
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
# the gradient of the loss with respect to a, b, c, d respectively.
loss.backward()
# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad
# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
神经网络(NN)是在某些输入数据上执行的嵌套函数的集合。 这些函数由参数(由权重和偏差组成)定义,这些参数在 PyTorch 中存储在张量中。
正向传播:在正向传播中,NN 对正确的输出进行最佳猜测。 它通过其每个函数运行输入数据以进行猜测。
反向传播:在反向传播中,NN 根据其猜测中的误差调整其参数。 它通过从输出向后遍历,收集有关函数参数(梯度)的误差导数并使用梯度下降来优化参数来实现。
让我们来看一个训练步骤。 对于此示例,我们从torchvision
加载了经过预训练的 resnet18 模型。 我们创建一个随机数据张量来表示具有 3 个通道的单个图像,高度&宽度为 64,其对应的label
初始化为一些随机值。
import torch, torchvision
model = torchvision.models.resnet18(pretrained=True)
data = torch.rand(1, 3, 64, 64)
labels = torch.rand(1, 1000)
接下来,我们通过模型的每一层运行输入数据以进行预测。 这是正向传播。
prediction = model(data) # forward pass
我们使用模型的预测和相应的标签来计算误差(loss
)。 下一步是通过网络反向传播此误差。 当我们在误差张量上调用.backward()
时,开始反向传播。 然后,Autograd 会为每个模型参数计算梯度并将其存储在参数的.grad
属性中。
loss = (prediction - labels).sum()
loss.backward() # backward pass
接下来,我们加载一个优化器,在本例中为 SGD,学习率为 0.01,动量为 0.9。 我们在优化器中注册模型的所有参数。
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
#最后,我们调用.step()启动梯度下降。 优化器通过.grad中存储的梯度来调整每个参数。
optim.step() #gradient descent
可以使用torch.nn
包构建神经网络。nn
依赖于autograd
来定义模型并对其进行微分。 nn.Module
包含层,以及返回output
的正向传播方法forward(input)
。
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
神经网络的典型训练过程如下:
weight = weight - learning_rate * gradient
损失函数采用一对(输出,目标)输入,并计算一个值,该值估计输出与目标之间的距离。nn
包下有几种不同的损失函数。 一个简单的损失是:nn.MSELoss
,它计算输入和目标之间的均方误差。
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
现在,如果使用.grad_fn
属性向后跟随loss
,您将看到一个计算图,如下所示:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
因此,当我们调用loss.backward()
时,整个图将被微分。 损失,并且图中具有requires_grad=True
的所有张量将随梯度累积其.grad
张量。
为了说明,让我们向后走几步:
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
要反向传播误差,我们要做的只是对loss.backward()
。 不过,您需要清除现有的梯度,否则梯度将累积到现有的梯度中。
现在,我们将其称为loss.backward()
,然后看一下向后前后conv1
的偏差梯度。
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
要反向传播误差,我们要做的只是对loss.backward()
。 不过,您需要清除现有的梯度,否则梯度将累积到现有的梯度中。
现在,我们将其称为loss.backward()
,然后看一下向后前后conv1
的偏差梯度。
实践中使用的最简单的更新规则是随机梯度下降(SGD):
weight = weight - learning_rate * gradient
#我们可以使用简单的 Python 代码实现此目标:
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
在使用神经网络时,您希望使用各种不同的更新规则,例如 SGD,Nesterov-SGD,Adam,RMSProp 等。为实现此目的,我们构建了一个小包装:torch.optim
,可实现所有这些方法。 使用它非常简单:
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
注意 : 观察如何使用optimizer.zero_grad()
将梯度缓冲区手动设置为零。 这是因为如反向传播部分中所述累积了梯度。
通常,当您必须处理图像,文本,音频或视频数据时,可以使用将数据加载到 NumPy 数组中的标准 Python 包。 然后,您可以将该数组转换为torch.*Tensor
。
专门针对视觉,我们创建了一个名为torchvision
的包,其中包含用于常见数据集(例如 Imagenet,CIFAR10,MNIST 等)的数据加载器,以及用于图像(即torchvision.datasets
和torch.utils.data.DataLoader
)的数据转换器。这提供了极大的便利,并且避免了编写样板代码。
torch.save()并torch.load()轻松保存和加载张量:
>>> t = torch.tensor([1., 2.])
>>> torch.save(t, 'tensor.pt')
>>> torch.load('tensor.pt')
tensor([1., 2.])
按照约定,PyTorch文件通常以’.pt’或’.pth’扩展名编写。
torch.save()并torch.load()默认使用Python的pickle,因此您还可以将多个张量保存为元组,列表和字典等Python对象的一部分:
>>> d = {'a': torch.tensor([1., 2.]), 'b': torch.tensor([3., 4.])}
>>> torch.save(d, 'tensor_dict.pt')
>>> torch.load('tensor_dict.pt')
{'a': tensor([1., 2.]), 'b': tensor([3., 4.])}
保存张量将保留其视图关系:
>>> numbers = torch.arange(1, 10)
>>> evens = numbers[1::2]
>>> torch.save([numbers, evens], 'tensors.pt')
>>> loaded_numbers, loaded_evens = torch.load('tensors.pt')
>>> loaded_evens *= 2
>>> loaded_numbers
tensor([ 1, 4, 3, 8, 5, 12, 7, 16, 9])
之前从“神经网络”部分复制神经网络,然后对其进行修改以获取 3 通道图像(而不是定义的 1 通道图像)。
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
让我们使用分类交叉熵损失和带有动量的 SGD
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
训练网络: 我们只需要遍历数据迭代器,然后将输入馈送到网络并进行优化即可。
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
让我们快速保存我们训练过的模型:
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
让我们重新加载保存的模型:
net = Net()
net.load_state_dict(torch.load(PATH))
# 现在让我们看看神经网络对以上这些示例的看法:
outputs = net(images)
# 输出是 10 类的能量。 一个类别的能量越高,网络就认为该图像属于特定类别。 因此,让我们获取最高能量的指数:
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
# 让我们看一下网络在整个数据集上的表现:
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
# 哪些类的表现良好,哪些类的表现不佳:
class_correct = list(0\. for i in range(10))
class_total = list(0\. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
我们将通过预测神经网络输出的类别标签并根据实际情况进行检查来进行检查。 如果预测正确,则将样本添加到正确预测列表中。
好的,第一步。 让我们显示测试集中的图像以使其熟悉。
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
就像将张量转移到 GPU 上一样,您也将神经网络转移到 GPU 上。
如果可以使用 CUDA,首先将我们的设备定义为第一个可见的 cuda 设备:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)
# 这些方法将递归遍历所有模块,并将其参数和缓冲区转换为 CUDA 张量:
net.to(device)
# 还必须将每一步的输入和目标也发送到 GPU:
inputs, labels = data[0].to(device), data[1].to(device)
在幕后,每个原始的 Autograd 运算符实际上都是在张量上运行的两个函数。 正向函数从输入张量计算输出张量。 反向函数接收相对于某个标量值的输出张量的梯度,并计算相对于相同标量值的输入张量的梯度。
在 PyTorch 中,我们可以通过定义torch.autograd.Function
的子类并实现forward
和backward
函数来轻松定义自己的 Autograd 运算符。 然后,我们可以通过构造实例并像调用函数一样调用新的 Autograd 运算符,并传递包含输入数据的张量。
在此示例中,我们将模型定义为y = a + b P[3](c + dx)
而不是y = a + bx + cx ^ 2 + dx ^ 3
,其中P[3](x) = 1/2 (5x ^ 3 - 3x)
是三次的[勒让德多项式]。 我们编写了自己的自定义 Autograd 函数来计算P[3]
的前进和后退,并使用它来实现我们的模型:
# -*- coding: utf-8 -*-
import torch
import math
class LegendrePolynomial3(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for_backward method.
"""
ctx.save_for_backward(input)
return 0.5 * (5 * input ** 3 - 3 * input)
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors
return grad_output * 1.5 * (5 * input ** 2 - 1)
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)
learning_rate = 5e-6
for t in range(2000):
# To apply our Function, we use Function.apply method. We alias this as 'P3'.
P3 = LegendrePolynomial3.apply
# Forward pass: compute predicted y using operations; we compute
# P3 using our custom autograd operation.
y_pred = a + b * P3(c + d * x)
# Compute and print loss
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())
# Use autograd to compute the backward pass.
loss.backward()
# Update weights using gradient descent
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad
# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None
print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')
nn
模块有时,您将需要指定比一系列现有模块更复杂的模型。 对于这些情况,您可以通过子类化nn.Module
并定义一个forward
来定义自己的模块,该模块使用其他模块或在 Tensors 上的其他自动转换操作来接收输入 Tensors 并生成输出 Tensors。
# -*- coding: utf-8 -*-
import torch
import math
class Polynomial3(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate four parameters and assign them as
member parameters.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Tensors.
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Construct our model by instantiating the class defined above
model = Polynomial3()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the nn.Linear
# module which is members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for t in range(2000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = criterion(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Result: {model.string()}')
in_channels:输入的通道数量【必选】
out_channels:输出的通道数量【必选】
kernel_size:卷积核的大小,类型为int或者元组,当卷积是放行的时候,只需要一个整数边长即可,卷积不是方形,需要输入一个元组表示 高和宽。【必选】
padding:设置在所有边界增加值为0的边距大小,当padding=1时候,由3 X 3,变成5 X 5。【可选】
dilation:控制卷积核之间的间距。【可选】
group:控制输入和输出之间的连接。(不常用)【可选】
bias:是否将一个学习到的bias增加到输出中,默认为True。【可选】
padding_mode:字符串类型,接收的字符串只有“zeros”和“circular”。【可选】