BNUOJ 36005 Chemical Reaction

Chemical Reaction

Time Limit: 3000ms
Memory Limit: 65536KB
This problem will be judged on  OpenJudge. Original ID: C14H
64-bit integer IO format: %lld      Java class name: Main
 

There are n chemical elements. Each of them has two attributes, a and b. When two different elements are mixed, a chemical reaction will occur. During a chemical reaction, energy will be released. The following expression tells the amount of energy that is released when i-th element and j-th element are mixed:

|ai - aj| ∙ bi ∙ bj / max(|bi|, |bj|)

Could you find the maximal energy that can be released by mixing two elements?

Note that the value of the expression may be negative, which means the chemical reaction absorbs energy. For simplicity, we regard it as releasing negative energy, so you can compare two values of the expression directly to determine which releases more energy.

 

 

Input

The first line contains an integer T (1 ≤ T ≤ 10) -- the number of test cases.

For each test case:
The first line contains an integer n. 2 ≤ n ≤ 500 000.
Then follows n lines, each line contains two integers: a, b, indicate the two attributes of a chemical element. 0 ≤ | a | ≤ 10 000.  1 < | b | ≤ 10 000.
 

Output

For each test case, output one integer in a single line -- the maximal energy that can be released by mixing two elements.
 

Sample Input

1

5

1 5

-2 4

3 7

5 -3

-6 -2

Sample Output

22

解题:把b进行分类,负数的一边,正数的一边,然后就可以了。。。。
 1 #include <iostream>

 2 #include <cstdio>

 3 #include <cstring>

 4 #include <cmath>

 5 #include <algorithm>

 6 #include <climits>

 7 #include <vector>

 8 #include <queue>

 9 #include <cstdlib>

10 #include <string>

11 #include <set>

12 #include <stack>

13 #define LL long long

14 #define INF 0x3f3f3f3f

15 #define pii pair<int,int>

16 using namespace std;

17 const int maxn = 500100;

18 struct node {

19     int x,y,id,minv,maxv;

20     node(int tx = 0,int ty = 0,int tz = 0) {

21         x = tx;

22         y = ty;

23         id = tz;

24     }

25   bool operator< (const node &t)const{

26         return y < t.y;

27     }

28 };

29 node pa[maxn],pb[maxn];

30 int ca,cb,u[maxn],v[maxn],T,n;

31 int bsearch(int lt,int rt,int val,node *d){

32     int ans = rt+1;

33     while(lt <= rt){

34         int mid = (lt+rt)>>1;

35         if(d[mid].y >= val){

36             ans = mid;

37             rt = mid-1;

38         }else lt = mid+1;

39     }

40     return ans;

41 }

42 int main() {

43     scanf("%d",&T);

44     while(T--) {

45         scanf("%d",&n);

46         for(int i = ca = cb = 0; i < n; ++i) {

47             scanf("%d %d",u+i,v+i);

48             if(v[i] < 0) pa[ca++] = node(u[i],-v[i],i);

49             else pb[cb++] = node(u[i],v[i],i);

50         }

51         sort(pa,pa+ca);

52         sort(pb,pb+cb);

53         if(ca) pa[ca-1].minv = pa[ca-1].maxv = pa[ca-1].x;

54         if(cb) pb[cb-1].minv = pb[cb-1].maxv = pb[cb-1].x;

55         for(int i = ca-2; i >= 0; --i) {

56             pa[i].minv = min(pa[i].x,pa[i+1].minv);

57             pa[i].maxv = max(pa[i].x,pa[i+1].maxv);

58         }

59         for(int i = cb-2; i >= 0; --i) {

60             pb[i].minv = min(pb[i].x,pb[i+1].minv);

61             pb[i].maxv = max(pb[i].x,pb[i+1].maxv);

62         }

63         int ans = -INF;

64         for(int i = 0; i < n; ++i) {

65             int idx = INF;

66             if(ca) {

67                 idx = bsearch(0,ca-1,abs(v[i]),pa);

68                 if(idx < ca && pa[idx].id == i) idx++;

69                 if(idx < ca) {

70                     ans = max(ans,-abs(u[i] - pa[idx].minv)*v[i]);

71                     ans = max(ans,-abs(u[i] - pa[idx].maxv)*v[i]);

72                     ans = max(ans,-abs(pa[idx].minv - u[i])*v[i]);

73                     ans = max(ans,-abs(pa[idx].maxv - u[i])*v[i]);

74                 }

75             }

76             if(cb) {

77                 idx = bsearch(0,cb-1,abs(v[i]),pb);

78                 if(idx < cb && pb[idx].id == i) idx++;

79                 if(idx < cb) {

80                     ans = max(ans,abs(u[i] - pb[idx].minv)*v[i]);

81                     ans = max(ans,abs(u[i] - pb[idx].maxv)*v[i]);

82                     ans = max(ans,abs(pb[idx].minv - u[i])*v[i]);

83                     ans = max(ans,abs(pb[idx].maxv - u[i])*v[i]);

84                 }

85             }

86         }

87         printf("%d\n",ans);

88 

89     }

90     return 0;

91 }
View Code

 

你可能感兴趣的:(action)