2018 CVPR
Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee
Attention U-Net: Learning Where to Look for the Pancreas
什么是attention?
Attention 即为注意力机制,举例就是在复杂场景文字识别中,使用Attention把注意力集中在需要识别的数字上。
在医疗图像中,就是把注意力集中到对特定任务有用的显著特征(比如说相关组织或者是器官),抑制输入图像中的不相关区域。在级联神经网络中,需要明确的外部组织/器官定位模块,而使用Attention就不需要了。
论文中是以U-net为基础进行集成,在decoder部分使用了Attention Gates ,得到了Attention U-Net模型。实验表明,融入AG后,Unet模型的精度更高了。
本文提出的 Attention
FCN (Fully Convolutional Network) 优于传统方法是因为:
(I) 利用随机梯度下降(SGD)优化学习域特定图像特征
(II) 学习的核在所有像素之间共享
(III) 图像卷积操作很好地利用了医学图像中的结构信息
cascaded CNNs方法:
Attention 分类:
Attention-Unet模型是以Unet模型为基础的,可以从上图看出,Attention-Unet和U-net的区别就在于decoder时,从encoder提取的部分进行了Attention Gate再进行decoder。
在对 encoder 每个分辨率上的特征与 decoder 中对应特征进行拼接之前,使用了一个AGs,重新调整了encoder的输出特征。该模块生成一个门控信号,用来控制不同空间位置处特征的重要性,如上图中红色圆圈所示。
Attention Gates 和 多阶段CNNs的定位模型 相比:
下图 红色 Attention Gate 解析:
该方法的注意力模块内部如图所示
该模块通过1x1x1的卷积分别与ReLU和Sigmoid结合,生成一个权重图
AGs输出为 :
element-wise multiplication of encoder input feature-maps and
Attention coefficients 倾向于在目标器官区域取得大的值,在背景区域取得较小的值,有助于提高图像分割的精度。
class AttU_Net(nn.Module):
def __init__(self,img_ch=3,output_ch=1):
super(AttU_Net,self).__init__()
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2)
self.Conv1 = conv_block(ch_in=img_ch,ch_out=64)
self.Conv2 = conv_block(ch_in=64,ch_out=128)
self.Conv3 = conv_block(ch_in=128,ch_out=256)
self.Conv4 = conv_block(ch_in=256,ch_out=512)
self.Conv5 = conv_block(ch_in=512,ch_out=1024)
self.Up5 = up_conv(ch_in=1024,ch_out=512)
self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256)
self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)
self.Up4 = up_conv(ch_in=512,ch_out=256)
self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128)
self.Up_conv4 = conv_block(ch_in=512, ch_out=256)
self.Up3 = up_conv(ch_in=256,ch_out=128)
self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64)
self.Up_conv3 = conv_block(ch_in=256, ch_out=128)
self.Up2 = up_conv(ch_in=128,ch_out=64)
self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32)
self.Up_conv2 = conv_block(ch_in=128, ch_out=64)
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0)
def forward(self,x):
# encoding path
x1 = self.Conv1(x)
x2 = self.Maxpool(x1)
x2 = self.Conv2(x2)
x3 = self.Maxpool(x2)
x3 = self.Conv3(x3)
x4 = self.Maxpool(x3)
x4 = self.Conv4(x4)
x5 = self.Maxpool(x4)
x5 = self.Conv5(x5)
# decoding + concat path
d5 = self.Up5(x5)
x4 = self.Att5(g=d5,x=x4)
d5 = torch.cat((x4,d5),dim=1)
d5 = self.Up_conv5(d5)
d4 = self.Up4(d5)
x3 = self.Att4(g=d4,x=x3)
d4 = torch.cat((x3,d4),dim=1)
d4 = self.Up_conv4(d4)
d3 = self.Up3(d4)
x2 = self.Att3(g=d3,x=x2)
d3 = torch.cat((x2,d3),dim=1)
d3 = self.Up_conv3(d3)
d2 = self.Up2(d3)
x1 = self.Att2(g=d2,x=x1)
d2 = torch.cat((x1,d2),dim=1)
d2 = self.Up_conv2(d2)
d1 = self.Conv_1x1(d2)
return d1
class Attention_block(nn.Module):
def __init__(self,F_g,F_l,F_int):
super(Attention_block,self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self,g,x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1+x1)
psi = self.psi(psi)
return x*psi
# self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128)
# g=torch.Size([1, 256, 48, 64])
# x=torch.Size([1, 256, 48, 64])
# g1=torch.Size([1, 128, 48, 64])
# x1=torch.Size([1, 128, 48, 64])
# psi=torch.Size([1, 128, 48, 64])
# psi=torch.Size([1, 1, 48, 64])
# x*psi=torch.Size([1, 256, 48, 64])
https://blog.csdn.net/qq_41352018/article/details/80551737
https://blog.csdn.net/qingmeiann/article/details/80555981