Unet发布于MICCAI。其论文的名字也说得相对很明白,用于生物医学图像分割。
《U-Net: Convolutional Networks for Biomedical Image Segmentation》
Unet与前文所讲的FCN颇为相似,或者说FCN影响了Unet也影响了之后各类语义分割网络的结构设计。
Unet的网络设计如其名字一般优雅,U型网络。图像数据经过4次下采样,再经过四次上采样恢复到原图大小,同时,每一个上采样层和下采样层之间都有一个跳跃连接(skip connection)。相对FCN来说,这种层层连接的U型架构更加优雅,由于每一次上采样时都融合了对应下采样层的特征,Unet在像素级别的恢复上效果更佳。
而每一层的特征融合后都会经过一系列的卷积层,以此来处理特征图中的细节,让模型学习这些信息来组装一个更精确的输出。
作者在设计Unet时也加入了一些tricks来帮助模型训练。
原作者将这个策略称为Overlap-tile strategy, 该策略允许通过重叠的方法对任意大的图像进行无缝分割(见图2)。为了预测图像边界区域中的像素,通过镜像输入图像来推断缺失的上下文。这种平铺策略对于将网络应用于大型图像很重要。比如,需要预测图中黄色框的信息,就将蓝色框的数据作为输入,如果蓝色框内有一部分信息缺失,就对蓝色框做镜像处理,获得黄色框区域的上下文信息。
至于为什么要这么做,我认为主要有两个原因:
一是,作者在原文中提到的,因为需要输入的图像分辨率过大,对GPU的显存占用比较高,这种通过滑窗的预测方式能够在一定程度上减轻GPU的负担。(毕竟是医学图像嘛,往往对图像分辨率要求较高,强行将图像的分辨率resize到比较低的情况下容易损失一些信息)。
二是,整个Unet的设计中都没有使用padding,因为下采样维度越高,经过越多的卷积层,padding操作越多,越深层的特征图就越容易受到padding的影响,这就导致了图像边缘的损失。但是呢,不使用padding的话,在层层的卷积过程中,图像的分辨率会越来越小,导致最后上采样回去的特征图尺寸和原图不匹配,为了解决这个问题,作者"粗暴"地将原图做一个镜像扩充,这样上采样回去的图像就和原图一样大了。
通过pytorch复现一下Unet模型。
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import transforms
from torchvision import models
from tqdm import tqdm
import warnings
import os.path as osp
import torch
import torch.nn as nn
class Unet(nn.Module):
def __init__(self, num_classes):
super(Unet, self).__init__()
self.stage_1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.stage_2 = nn.Sequential(
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.stage_3 = nn.Sequential(
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
)
self.stage_4 = nn.Sequential(
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
)
self.stage_5 = nn.Sequential(
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3,padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(),
nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=3,padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(),
)
self.upsample_4 = nn.Sequential(
nn.ConvTranspose2d(in_channels=1024, out_channels=512,kernel_size=4,stride=2, padding=1)
)
self.upsample_3 = nn.Sequential(
nn.ConvTranspose2d(in_channels=512, out_channels=256,kernel_size=4,stride=2, padding=1)
)
self.upsample_2 = nn.Sequential(
nn.ConvTranspose2d(in_channels=256, out_channels=128,kernel_size=4,stride=2, padding=1)
)
self.upsample_1 = nn.Sequential(
nn.ConvTranspose2d(in_channels=128, out_channels=64,kernel_size=4,stride=2, padding=1)
)
self.stage_up_4 = nn.Sequential(
nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU()
)
self.stage_up_3 = nn.Sequential(
nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU()
)
self.stage_up_2 = nn.Sequential(
nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.stage_up_1 = nn.Sequential(
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.final = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=num_classes, kernel_size=3, padding=1),
)
def forward(self, x):
x = x.float()
#下采样过程
stage_1 = self.stage_1(x)
stage_2 = self.stage_2(stage_1)
stage_3 = self.stage_3(stage_2)
stage_4 = self.stage_4(stage_3)
stage_5 = self.stage_5(stage_4)
#1024->512
up_4 = self.upsample_4(stage_5)
#512+512 -> 512\
up_4_conv = self.stage_up_4(torch.cat([up_4, stage_4], dim=1))
#512 -> 256
up_3 = self.upsample_3(up_4_conv)
#256+256 -> 256
up_3_conv = self.stage_up_3(torch.cat([up_3, stage_3], dim=1))
up_2 = self.upsample_2(up_3_conv)
up_2_conv = self.stage_up_2(torch.cat([up_2, stage_2], dim=1))
up_1 = self.upsample_1(up_2_conv)
up_1_conv = self.stage_up_1(torch.cat([up_1, stage_1], dim=1))
output = self.final(up_1_conv)
return output
可以进行一下简单测试
device = torch.device("cuda:0")
model = Unet(num_classes=2)
model = model.to(device)
a = torch.ones([2, 3, 224, 224])
a = a.to(device)
model(a).shape
为了方便,本文构建的模型没有按照Unet论文中的镜像填充和重叠的切割策略,用padding来保证上采样和下采样时特征图大小匹配。所以,输出的大小和原图大小应当相等。
数据集使用了CamVid数据集。
# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
"""CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
def __init__(self, images_dir, masks_dir):
self.transform = A.Compose([
A.Resize(224, 224),
A.HorizontalFlip(),
A.VerticalFlip(),
A.Normalize(),
ToTensorV2(),
])
self.ids = os.listdir(images_dir)
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
def __getitem__(self, i):
# read data
image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
image = self.transform(image=image,mask=mask)
return image['image'], image['mask'][:,:,0]
def __len__(self):
return len(self.ids)
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
train_dataset = CamVidDataset(
x_train_dir,
y_train_dir,
)
val_dataset = CamVidDataset(
x_valid_dir,
y_valid_dir,
)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True,drop_last=True)
model = Unet(num_classes=33).cuda()
#model.load_state_dict(torch.load(r"checkpoints/Unet_50.pth"), strict=False)
from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(),lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.1, last_epoch=-1)
#训练50轮
epochs_num = 100
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,
devices=d2l.try_all_gpus()):
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
loss_list = []
train_acc_list = []
test_acc_list = []
epochs_list = []
time_list = []
for epoch in range(num_epochs):
# Sum of training loss, sum of training accuracy, no. of examples,
# no. of predictions
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(
net, features, labels.long(), loss, trainer, devices)
metric.add(l, acc, labels.shape[0], labels.numel())
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
scheduler.step()
# print(f'loss {metric[0] / metric[2]:.3f}, train acc '
# f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
# print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
# f'{str(devices)}')
print(f"epoch {epoch} --- loss {metric[0] / metric[2]:.3f} --- train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")
#---------保存训练数据---------------
df = pd.DataFrame()
loss_list.append(metric[0] / metric[2])
train_acc_list.append(metric[1] / metric[3])
test_acc_list.append(test_acc)
epochs_list.append(epoch)
time_list.append(timer.sum())
df['epoch'] = epochs_list
df['loss'] = loss_list
df['train_acc'] = train_acc_list
df['test_acc'] = test_acc_list
df['time'] = time_list
df.to_excel("savefile/Unet_camvid.xlsx")
#----------------保存模型-------------------
if np.mod(epoch+1, 5) == 0:
torch.save(model.state_dict(), f'checkpoints/Unet_{epoch+1}.pth')
train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)
大多数医疗影像语义分割任务都会首先用Unet作为baseline,Unet的结构也被称为编码器-解码器结构,即Encoder-Decorer结构,这种结构将会出现在各类语义分割的模型中。
Unet也衍生出一系列家族成员,包括Unet++、attention-Unet、Trans Unet、Swin Unet等等。这些模型也会在之后的系列中更新。