【机器学习】一文全览机器学习建模流程(Python代码)

随着人工智能时代的到来,机器学习已成为解决问题的关键工具,如识别交易是否欺诈、预测降雨量、新闻分类、产品营销推荐。我们接下来会详细介绍机器学习如何应用到实际问题,并概括机器学习应用的一般流程。

【机器学习】一文全览机器学习建模流程(Python代码)_第1张图片

1.1 明确问题

明确业务问题是机器学习的先决条件,即抽象出该问题为机器学习的预测问题:需要学习什么样的数据作为输入,目标是得到什么样的模型做决策作为输出。

一个简单的新闻分类的场景,就是学习已有的新闻及其类别标签数据,得到一个文本分类模型,通过模型对每天新的新闻做类别预测,以归类到每个新闻频道。

【机器学习】一文全览机器学习建模流程(Python代码)_第2张图片

1.2 数据选择

机器学习广泛流传一句话:“数据和特征决定了机器学习结果的上限,而模型算法只是尽可能逼近这个上限”,意味着数据及其特征表示的质量决定了模型的最终效果,且在实际的工业应用中,算法通常占了很小的一部分,大部分的工作都是在找数据、提炼数据、分析数据及特征工程。

数据选择是准备机器学习原料的关键,需要关注的是:① 数据的代表性:数据质量差或无代表性,会导致模型拟合效果差;② 数据时间范围:对于监督学习的特征变量X及标签Y,如与时间先后有关,则需要划定好数据时间窗口,否则可能会导致数据泄漏,即存在和利用因果颠倒的特征变量的现象。(如预测明天会不会下雨,但是训练数据引入明天温湿度情况);③ 数据业务范围:明确与任务相关的数据表范围,避免缺失代表性数据或引入大量无关数据作为噪音。

2 特征工程

特征工程就是对原始数据分析处理转化为模型可用的特征,这些特征可以更好地向预测模型描述潜在规律,从而提高模型对未见数据的准确性。特征工程按技术上可分为如下几步:① 探索性数据分析:数据分布、缺失、异常及相关性等情况;② 数据预处理:缺失值/异常值处理,数据离散化,数据标准化等;③ 特征提取:特征表示,特征衍生,特征选择,特征降维等;

2.1 探索性数据分析

拿到数据后,可以先做探索性数据分析(EDA)去理解数据本身的内部结构及规律,如果你对数据情况不了解也没有相关的业务背景知识,不做相关的分析及预处理,直接将数据喂给传统模型往往效果不太好。通过探索性数据分析,可以了解数据分布、缺失、异常及相关性等情况,利用这些基本信息做数据的处理及特征加工,可以进一步提高特征质量,灵活选择合适的模型方法。

【机器学习】一文全览机器学习建模流程(Python代码)_第3张图片

2.2 数据预处理

异常值处理

收集的数据由于人为或者自然因素可能引入了异常值(噪音),这会对模型学习进行干扰。 通常需要处理人为引起的异常值,通过业务或技术手段(如3σ准则)判定异常值,再由(正则式匹配)等方式筛选异常的信息,并结合业务情况删除或者替换数值。

缺失值处理

数据缺失值可以通过结合业务进行填充数值、不做处理或者删除。根据特征缺失率情况及处理方式分为以下情况:① 缺失率较高,并结合业务可以直接删除该特征变量。经验上可以新增一个bool类型的变量特征记录该字段的缺失情况,缺失记为1,非缺失记为0;② 缺失率较低,结合业务可使用一些缺失值填充手段,如pandas的fillna方法、训练回归模型预测缺失值并填充;③ 不做处理:部分模型如随机森林、xgboost、lightgbm能够处理数据缺失的情况,不需要对缺失数据再做处理。

数据离散化

离散化是将连续的数据进行分段,使其变为一段段离散化的区间,分段的原则有等宽、等频等方法。通过离散化一般可以增加抗噪能力、使特征更有业务解释性、减小算法的时间及空间开销(不同算法情况不一)。

数据标准化

数据各个特征变量的量纲差异很大,可以使用数据标准化消除不同分量量纲差异的影响,加速模型收敛的效率。常用的方法有:① min-max 标准化:可将数值范围缩放到(0, 1)且无改变数据分布。max为样本最大值,min为样本最小值。

② z-score 标准化:可将数值范围缩放到0附近, 经过处理的数据符合标准正态分布。是平均值,σ是标准差。

2.3 特征提取

特征表示

数据需要转换为计算机能够处理的数值形式,图片类的数据需要转换为RGB三维矩阵的表示。

【机器学习】一文全览机器学习建模流程(Python代码)_第4张图片

字符类的数据可以用多维数组表示,有Onehot独热编码表示(用单独一个位置的1来表示)、word2vetor分布式表示等;

【机器学习】一文全览机器学习建模流程(Python代码)_第5张图片
特征衍生

基础特征对样本信息的表达有限,可通过特征衍生可以增加特征的非线性表达能力,提升模型效果。另外,在业务上的理解设计特征,还可以增加模型的可解释性。(如体重除以身高就是表达健康情况的重要特征。) 特征衍生是对现有基础特征的含义进行某种处理(聚合/转换之类),常用方法人工设计、自动化特征衍生(图4.15):① 结合业务的理解做人工衍生设计:聚合的方式是指对字段聚合后求平均值、计数、最大值等。比如通过12个月工资可以加工出:平均月工资,薪资最大值 等等;转换的方式是指对字段间做加减乘除之类。比如通过12个月工资可以加工出:当月工资收入与支出的比值、差值等等;

【机器学习】一文全览机器学习建模流程(Python代码)_第6张图片

② 使用自动化特征衍生工具:如Featuretools等,可以使用聚合(agg_primitives)、转换(trans_primitives)或则自定义方式暴力生成特征;

特征选择

特征选择的目标是寻找最优特征子集,通过筛选出显著特征、摒弃冗余特征,减少模型的过拟合风险并提高运行效率。特征选择方法一般分为三类:① 过滤法:计算特征的缺失情况、发散性、相关性、信息量、稳定性等类型的指标对各个特征进行评估选择,常用如缺失率、单值率、方差验证、pearson相关系数、chi2卡方检验、IV值、信息增益及PSI等方法。② 包装法:通过每次选择部分特征迭代训练模型,根据模型预测效果评分选择特征的去留,如sklearn的RFE递归特征消除。③ 嵌入法:直接使用某些模型训练的到特征重要性,在模型训练同时进行特征选择。通过模型得到各个特征的权值系数,根据权值系数从大到小来选择特征。常用如基于L1正则项的逻辑回归、XGBOOST特征重要性选择特征。

【机器学习】一文全览机器学习建模流程(Python代码)_第7张图片

特征降维

如果特征选择后的特征数目仍太多,这种情形下常会有数据样本稀疏、距离计算困难的问题(称为 “维数灾难”),可以通过特征降维解决。常用的降维方法有:主成分分析法(PCA)等。

3 模型训练

模型训练是利用既定的模型方法去学习数据经验的过程,这过程还需要结合模型评估以调整算法的超参数,最终选择表现较优的模型。

3.1 数据集划分

训练模型前,常用的HoldOut验证法(此外还有留一法、k折交叉验证等方法),把数据集分为训练集和测试集,并可再对训练集进一步细分为训练集和验证集,以方便评估模型的性能。① 训练集(training set):用于运行学习算法,训练模型。② 开发验证集(development set)用于调整超参数、选择特征等,以选择合适模型。③ 测试集(test set)只用于评估已选择模型的性能,但不会据此改变学习算法或参数。###3.2 模型方法选择 结合当前任务及数据情况选择合适的模型方法,常用的方法如下图 ,scikit-learn模型方法的选择。此外还可以结合多个模型做模型融合。

【机器学习】一文全览机器学习建模流程(Python代码)_第8张图片

3.3 训练过程

模型的训练过程即学习数据经验得到较优模型及对应参数(如神经网络最终学习到较优的权重值)。整个训练过程还需要通过调节超参数(如神经网络层数、梯度下降的学习率)进行控制优化的。调节超参数是一个基于数据集、模型和训练过程细节的实证过程,需要基于对算法的原理理解和经验,借助模型在验证集的评估进行参数调优,此外还有自动调参技术:网格搜索、随机搜索及贝叶斯优化等。

【机器学习】一文全览机器学习建模流程(Python代码)_第9张图片

4 模型评估

机器学习的直接目的是学(拟合)到“好”的模型,不仅仅是学习过程中对训练数据的良好的学习预测能力,根本上在于要对新数据能有很好的预测能力(泛化能力),所以客观地评估模型性能至关重要。技术上常根据训练集及测试集的指标表现,评估模型的性能。

4.1 评估指标

评估分类模型

常用的评估标准有查准率P、查全率R及两者调和平均F1-score 等,并由混淆矩阵的统计相应的个数计算出数值:

【机器学习】一文全览机器学习建模流程(Python代码)_第10张图片

查准率是指分类器分类正确的正样本(TP)的个数占该分类器所有预测为正样本个数(TP+FP)的比例;查全率是指分类器分类正确的正样本个数(TP)占所有的正样本个数(TP+FN)的比例。F1-score是查准率P、查全率R的调和平均:

评估回归模型

常用的评估指标有MSE均方误差等。反馈的是预测数值与实际值的拟合情况。

评估聚类模型

可分为两类方式,一类将聚类结果与某个“参考模型”的结果进行比较,称为“外部指标”(external index):如兰德指数,FM指数等。另一类是直接考察聚类结果而不利用任何参考模型,称为“内部指标”(internal index):如紧凑度、分离度等。

4.2 模型评估及优化

训练机器学习模型所使用的数据样本集称之为训练集(training set), 在训练数据的误差称之为训练误差(training error),在测试数据上的误差,称之为测试误差(test error)或泛化误差 (generalization error)。

【机器学习】一文全览机器学习建模流程(Python代码)_第11张图片

描述模型拟合(学习)程度常用欠拟合、拟合良好、过拟合,我们可以通过训练误差及测试误差评估模型的拟合程度。从整体训练过程来看,欠拟合时训练误差和测试误差均较高,随着训练时间及模型复杂度的增加而下降。在到达一个拟合最优的临界点之后,训练误差下降,测试误差上升,这个时候就进入了过拟合区域。

【机器学习】一文全览机器学习建模流程(Python代码)_第12张图片

欠拟合是指相较于数据而言模型结构过于简单,以至于无法学习到数据中的规律。过拟合是指模型只过分地匹配训练数据集,以至于对新数据无良好地拟合及预测。其本质是较复杂模型从训练数据中学习到了统计噪声导致的。分析模型拟合效果并对模型进行优化,常用的方法有:

【机器学习】一文全览机器学习建模流程(Python代码)_第13张图片

5 模型决策

决策应用是机器学习最终目的,对模型预测信息加以分析解释,并应用于实际的工作领域。需要注意的是,工程上是结果导向,模型在线上运行的效果直接决定模型的成败,不仅仅包括其准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性的综合考虑。

6 机器学习项目实战(数据挖掘)

6.1 项目介绍

项目的实验数据来源著名的UCI机器学习数据库,该数据库有大量的人工智能数据挖掘数据。本例选用的是sklearn上的数据集版本:Breast Cancer Wisconsin DataSet(威斯康星州乳腺癌数据集),这些数据来源美国威斯康星大学医院的临床病例报告,每条样本有30个特征属性,标签为是否良性肿瘤,即有监督分类预测的问题。 项目的建模思路是通过分析乳腺癌数据集数据,特征工程,构建逻辑回归模型学习数据,预测样本的类别是否为良性肿瘤。

6.2 代码实现

导入相关的Python库,加载cancer数据集,查看数据介绍, 并转为DataFrame格式。

import numpy as np  
import pandas as pd
import matplotlib.pyplot as plt

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.utils import plot_model
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_score, recall_score, f1_score
dataset_cancer = datasets.load_breast_cancer()    # 加载癌细胞数据集

print(dataset_cancer['DESCR'])

df = pd.DataFrame(dataset_cancer.data, columns=dataset_cancer.feature_names)  

df['label'] = dataset_cancer.target

print(df.shape)

df.head()
【机器学习】一文全览机器学习建模流程(Python代码)_第14张图片

探索性数据分析EDA:使用pandas_profiling库分析数据数值情况,缺失率及相关性等。

import pandas_profiling

pandas_profiling.ProfileReport(df, title='Breast Cancer DataSet EDA')
【机器学习】一文全览机器学习建模流程(Python代码)_第15张图片

特征工程方面主要的分析及处理有:

● 分析特征无明显异常值及缺失的情况,无需处理;

● 已有mean/standard error等衍生特征,无需特征衍生;

● 结合相关性等指标做特征选择(过滤法);

● 对特征进行标准化以加速模型学习过程;

# 筛选相关性>0.99的特征清单列表及标签
drop_feas = ['label','worst_radius','mean_radius']

# 选择标签y及特征x
y = df.label
x = df.drop(drop_feas,axis=1)  # 删除相关性强特征及标签列

# holdout验证法: 按3:7划分测试集 训练集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

# 特征z-score 标准化
sc = StandardScaler()

x_train = sc.fit_transform(x_train)  # 注:训练集测试集要分别标准化,以免测试集信息泄露到模型训练
x_test = sc.transform(x_test) 

模型训练:使用keras搭建逻辑回归模型,训练模型,观察模型训练集及验证集的loss损失

_dim = x_train.shape[1]   # 输入模型的特征数

# LR逻辑回归模型
model = Sequential()   

model.add(Dense(1, input_dim=_dim, activation='sigmoid',bias_initializer='uniform'))  # 添加网络层,激活函数sigmoid

model.summary()

plot_model(model,show_shapes=True)
model.compile(optimizer='adam', loss='binary_crossentropy')  #模型编译:选择交叉熵损失函数及adam梯度下降法优化算法

model.fit(x, y, validation_split=0.3, epochs=200)   # 模型迭代训练: validation_split比例0.3, 迭代epochs200次

# 模型训练集及验证集的损失

plt.figure()

plt.plot(model.history.history['loss'],'b',label='Training loss')

plt.plot(model.history.history['val_loss'],'r',label='Validation val_loss')

plt.title('Traing and Validation loss')

plt.legend()
【机器学习】一文全览机器学习建模流程(Python代码)_第16张图片

以测试集F1-score等指标的表现,评估模型的泛化能力。最终测试集的f1-score有88%,有较好的模型表现。

def model_metrics(model, x, y):
    """

    评估指标

    """
    yhat = model.predict(x).round()  # 模型预测yhat,预测阈值按默认0.5划分

    result = {
              'f1_score': f1_score(y, yhat),

              'precision':precision_score(y, yhat),

              'recall':recall_score(y, yhat)
             }

    return result

# 模型评估结果

print("TRAIN")

print(model_metrics(model, x_train, y_train))

print("TEST")

print(model_metrics(model, x_test, y_test))

文章首发于算法进阶,公众号阅读原文可访问[GitHub的项目代码](https://github.com/aialgorithm/Blog)


往期精彩回顾



适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑黄海广老师《机器学习课程》课件合集
本站qq群851320808,加入微信群请扫码:

你可能感兴趣的:(算法,人工智能,大数据,数据挖掘,python)