【1】方法一:获取nn.Sequential的中间层输出
import torch import torch.nn as nn model = nn.Sequential( nn.Conv2d(3, 9, 1, 1, 0, bias=False), nn.BatchNorm2d(9), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)), ) # 假如想要获得ReLu的输出 x = torch.rand([2, 3, 224, 224]) for i in range(len(model)): x = model[i](x) if i == 2: ReLu_out = x print('ReLu_out.shape:\n\t',ReLu_out.shape) print('x.shape:\n\t',x.shape)
结果:
ReLu_out.shape:
torch.Size([2, 9, 224, 224])
x.shape:
torch.Size([2, 9, 1, 1])
【2】方法二:IntermediateLayerGetter
from collections import OrderedDict import torch from torch import nn class IntermediateLayerGetter(nn.ModuleDict): """ Module wrapper that returns intermediate layers from a model It has a strong assumption that the modules have been registered into the model in the same order as they are used. This means that one should **not** reuse the same nn.Module twice in the forward if you want this to work. Additionally, it is only able to query submodules that are directly assigned to the model. So if `model` is passed, `model.feature1` can be returned, but not `model.feature1.layer2`. Arguments: model (nn.Module): model on which we will extract the features return_layers (Dict[name, new_name]): a dict containing the names of the modules for which the activations will be returned as the key of the dict, and the value of the dict is the name of the returned activation (which the user can specify). """ def __init__(self, model, return_layers): if not set(return_layers).issubset([name for name, _ in model.named_children()]): raise ValueError("return_layers are not present in model") orig_return_layers = return_layers return_layers = {k: v for k, v in return_layers.items()} layers = OrderedDict() for name, module in model.named_children(): layers[name] = module if name in return_layers: del return_layers[name] if not return_layers: break super(IntermediateLayerGetter, self).__init__(layers) self.return_layers = orig_return_layers def forward(self, x): out = OrderedDict() for name, module in self.named_children(): x = module(x) if name in self.return_layers: out_name = self.return_layers[name] out[out_name] = x return out
# example m = torchvision.models.resnet18(pretrained=True) # extract layer1 and layer3, giving as names `feat1` and feat2` new_m = torchvision.models._utils.IntermediateLayerGetter(m,{'layer1': 'feat1', 'layer3': 'feat2'}) out = new_m(torch.rand(1, 3, 224, 224)) print([(k, v.shape) for k, v in out.items()]) # [('feat1', torch.Size([1, 64, 56, 56])), ('feat2', torch.Size([1, 256, 14, 14]))]
作用:
在定义它的时候注明作用的模型(如下例中的m)和要返回的layer(如下例中的layer1,layer3),得到new_m。
使用时喂输入变量,返回的就是对应的layer
。
举例:
m = torchvision.models.resnet18(pretrained=True) # extract layer1 and layer3, giving as names `feat1` and feat2` new_m = torchvision.models._utils.IntermediateLayerGetter(m,{'layer1': 'feat1', 'layer3': 'feat2'}) out = new_m(torch.rand(1, 3, 224, 224)) print([(k, v.shape) for k, v in out.items()])
输出结果:
[('feat1', torch.Size([1, 64, 56, 56])), ('feat2', torch.Size([1, 256, 14, 14]))]
【3】方法三:钩子
class TestForHook(nn.Module): def __init__(self): super().__init__() self.linear_1 = nn.Linear(in_features=2, out_features=2) self.linear_2 = nn.Linear(in_features=2, out_features=1) self.relu = nn.ReLU() self.relu6 = nn.ReLU6() self.initialize() def forward(self, x): linear_1 = self.linear_1(x) linear_2 = self.linear_2(linear_1) relu = self.relu(linear_2) relu_6 = self.relu6(relu) layers_in = (x, linear_1, linear_2) layers_out = (linear_1, linear_2, relu) return relu_6, layers_in, layers_out features_in_hook = [] features_out_hook = [] def hook(module, fea_in, fea_out): features_in_hook.append(fea_in) features_out_hook.append(fea_out) return None net = TestForHook()
第一种写法,按照类型勾,但如果有重复类型的layer比较复杂
net_chilren = net.children() for child in net_chilren: if not isinstance(child, nn.ReLU6): child.register_forward_hook(hook=hook)
推荐下面我改的这种写法,因为我自己的网络中,在Sequential
中有很多层,
这种方式可以直接先print(net)
一下,找出自己所需要那个layer
的名称,按名称勾出来
layer_name = 'relu_6' for (name, module) in net.named_modules(): if name == layer_name: module.register_forward_hook(hook=hook) print(features_in_hook) # 勾的是指定层的输入 print(features_out_hook) # 勾的是指定层的输出
到此这篇关于分享Pytorch获取中间层输出的3种方法的文章就介绍到这了,更多相关Pytorch获取中间层输出方法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!