原文链接:批流一体数据集成工具ChunJun同步Hive事务表原理详解及实战分享
课件获取:关注公众号__ “数栈研习社”,__后台私信__ “ChengYing”__ 获得直播课件
视频回放:点击这里
ChengYing 开源项目地址:github 丨 gitee 喜欢我们的项目给我们点个__ STAR!STAR!!STAR!!!(重要的事情说三遍)__
技术交流钉钉 qun:30537511
本期我们带大家回顾一下无倦同学的直播分享《Chunjun同步Hive事务表详解》
一、Hive事务表的结构及原理
Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。
在分享Hive事务表的具体内容前,我们先来了解下HIve 事务表在 HDFS 存储上的一些限制。
Hive虽然支持了具有ACID语义的事务,但是没有像在MySQL中使用那样方便,有很多局限性,具体限制如下:
以下矩阵包括可以使用Hive创建的表的类型、是否支持ACID属性、所需的存储格式以及关键的SQL操作。
了解完Hive事务表的限制,现在我们具体了解下Hive事务表的内容。
1、事务表文件名字详解
$partition/base_$wid/$bucket
$partition/delta_$wid_$wid_$stid/$bucket
$partition/delete_delta_$wid_$wid_$stid/$bucket
2、事务表文件内容详解
$ orc-tools data bucket_00000
{"operation":0,"originalTransaction":1,"bucket":536870912,"rowId":0,"currentTransaction":1,"row":{"id":1,"name":"Jerry","age":18}}
{"operation":0,"originalTransaction":1,"bucket":536870912,"rowId":1,"currentTransaction":1,"row":{"id":2,"name":"Tom","age":19}}
{"operation":0,"originalTransaction":1,"bucket":536870912,"rowId":2,"currentTransaction":1,"row":{"id":3,"name":"Kate","age":20}}
operation 0 表示插入、1 表示更新,2 表示删除。由于使用了 split-update,UPDATE 是不会出现的。
originalTransaction是该条记录的原始写事务 ID:
a、对于 INSERT 操作,该值和 currentTransaction 是一致的;
b、对于 DELETE,则是该条记录第一次插入时的写事务 ID。
bucket 是一个 32 位整型,由 BucketCodec 编码,各个二进制位的含义为:
a、1-3 位:编码版本,当前是 001;
b、4 位:保留;
c、5-16 位:分桶 ID,由 0 开始。分桶 ID 是由 CLUSTERED BY 子句所指定的字段、以及分桶的数量决定的。该值和 bucket_N 中的 N 一致;
d、17-20 位:保留;
e、21-32 位:语句 ID;
举例来说,整型 536936448 的二进制格式为 00100000000000010000000000000000,即它是按版本 1 的格式编码的,分桶 ID 为 1。
rowId 是一个自增的唯一 ID,在写事务和分桶的组合中唯一;
currentTransaction 当前的写事务 ID;
row 具体数据。对于 DELETE 语句,则为 null。
3、更新 Hive 事务表数据
UPDATE employee SET age = 21 WHERE id = 2;
这条语句会先查询出所有符合条件的记录,获取它们的 row_id 信息,然后分别创建 delete 和 delta 目录:
/user/hive/warehouse/employee/delta_0000001_0000001_0000/bucket_00000
/user/hive/warehouse/employee/delete_delta_0000002_0000002_0000/bucket_00000 (update)
/user/hive/warehouse/employee/delta_0000002_0000002_0000/bucket_00000 (update)
delete_delta_0000002_0000002_0000/bucket_00000
包含了删除的记录:
{"operation":2,"originalTransaction":1,"bucket":536870912,"rowId":1,"currentTransaction":2,"row":null}
delta_0000002_0000002_0000/bucket_00000
包含更新后的数据:
{"operation":0,"originalTransaction":2,"bucket":536870912,"rowId":0,"currentTransaction":2,"row":{"id":2,"name":"Tom","salary":21}}
4、Row_ID 信息怎么查?
5、事务表压缩(Compact)
随着写操作的积累,表中的 delta 和 delete 文件会越来越多,事务表的读取过程中需要合并所有文件,数量一多势必会影响效率,此外小文件对 HDFS 这样的文件系统也不够友好,因此Hive 引入了压缩(Compaction)的概念,分为 Minor 和 Major 两类。
● Minor
Minor Compaction 会将所有的 delta 文件压缩为一个文件,delete 也压缩为一个。压缩后的结果文件名中会包含写事务 ID 范围,同时省略掉语句 ID。
压缩过程是在 Hive Metastore 中运行的,会根据一定阈值自动触发。我们也可以使用如下语句人工触发:
ALTER TABLE dtstack COMPACT 'MINOR'。
● Major
Major Compaction 会将所有的 delta 文件,delete 文件压缩到一个 base 文件。压缩后的结果文件名中会包含所有写事务 ID 的最大事务 ID。
压缩过程是在 Hive Metastore 中运行的,会根据一定阈值自动触发。我们也可以使用如下语句人工触发:
ALTER TABLE dtstack COMPACT 'MAJOR'。
6、文件内容详解
ALTER TABLE employee COMPACT 'minor';
语句执行前:
/user/hive/warehouse/employee/delta_0000001_0000001_0000
/user/hive/warehouse/employee/delta_0000002_0000002_0000 (insert 创建, mary的数据)
/user/hive/warehouse/employee/delete_delta_0000002_0000002_0001 (update)
/user/hive/warehouse/employee/delta_0000002_0000002_0001 (update)
语句执行后:
/user/hive/warehouse/employee/delete_delta_0000001_0000002
/user/hive/warehouse/employee/delta_0000001_0000002
7、读 Hive 事务表
我们可以看到 ACID 事务表中会包含三类文件,分别是 base、delta、以及 delete。文件中的每一行数据都会以 row_id 作为标识并排序。从 ACID 事务表中读取数据就是对这些文件进行合并,从而得到最新事务的结果。这一过程是在 OrcInputFormat 和 OrcRawRecordMerger 类中实现的,本质上是一个合并排序的算法。
以下列文件为例,产生这些文件的操作为:
插入三条记录
进行一次 Major Compaction
然后更新两条记录。
1-0-0-1 是对 originalTransaction - bucketId - rowId - currentTra
8、合并算法
对所有数据行按照 (originalTransaction, bucketId, rowId) 正序排列,(currentTransaction) 倒序排列,即:
originalTransaction-bucketId-rowId-currentTransaction
(base_1)1-0-0-1
(delete_2)1-0-1-2# 被跳过(DELETE)
(base_1)1-0-1-1 # 被跳过(当前记录的 row_id(1) 和上条数据一样)
(delete_2)1-0-2-2 # 被跳过(DELETE)
(base_1)1-0-2-1 # 被跳过(当前记录的 row_id(2) 和上条数据一样)
(delta_2)2-0-0-2
(delta_2)2-0-1-2
获取第一条记录;
如果当前记录的 row_id 和上条数据一样,则跳过;
如果当前记录的操作类型为 DELETE,也跳过;
通过以上两条规则,对于 1-0-1-2 和 1-0-1-1,这条记录会被跳过;
如果没有跳过,记录将被输出给下游;
重复以上过程。
合并过程是流式的,即 Hive 会将所有文件打开,预读第一条记录,并将 row_id 信息存入到 ReaderKey 类型中。
三、ChunJun读写Hive事务表实战
了解完Hive事务表的基本原理后,我们来为大家分享如何在ChunJun中读写Hive事务表。
1、事务表数据准备
-- 创建事务表
create table dtstack(
id int,
name string,
age int
)
stored as orc
TBLPROPERTIES('transactional'='true');
-- 插入 10 条测试数据
insert into dtstack (id, name, age)
values (1, "aa", 11), (2, "bb", 12), (3, "cc", 13), (4, "dd", 14), (5, "ee", 15),
(6, "ff", 16), (7, "gg", 17), (8, "hh", 18), (9, "ii", 19), (10, "jj", 20);
2、配置 ChunJun json 脚本
3、提交任务(读写事务表)
启动 Session
/root/wujuan/flink-1.12.7/bin/yarn-session.sh -t $ChunJun_HOME -d
提交 Yarn Session 任务
读取事务表
/root/wujuan/ChunJun/bin/ChunJun-yarn-session.sh -job /root/wujuan/ChunJun/ChunJun-examples/json/hive3/hive3_transaction_stream.json -confProp {\"yarn.application.id\":\"application_1650792512832_0134\"}
写入事务表
/root/wujuan/ChunJun/bin/ChunJun-yarn-session.sh -job /root/wujuan/ChunJun/ChunJun-examples/json/hive3/stream_hive3_transaction.json -confProp {\"yarn.application.id\":\"application_1650792512832_0134\"}
根据上一行结果替换 yarn.application.id
三、ChunJun 读写Hive事务表源码分析
压缩器是在 Metastore 境内运行的一组后台程序,用于支持 ACID 系统。它由 Initiator、 Worker、 Cleaner、 AcidHouseKeeperService 和其他一些组成。
1、Compactor
● Delta File Compaction
在不断的对表修改中,会创建越来越多的delta文件,需要这些文件需要被压缩以保证性能。有两种类型的压缩,即(minor)小压缩和(major)大压缩:
minor 需要一组现有的delta文件,并将它们重写为每个桶的一个delta文件
major 需要一个或多个delta文件和桶的基础文件,并将它们改写成每个桶的新基础文件。major 需要更久,但是效果更好
所有的压缩工作都是在后台进行的,并不妨碍对数据的并发读写。在压缩之后系统会等待,直到所有旧文件的读都结束,然后删除旧文件。
●Initiator
这个模块负责发现哪些表或分区要进行压缩。这应该在元存储中使用hive.compactor.initiator.on来启用。 每个 Compact 任务处理一个分区(如果表是未分区的,则处理整个表)。如果某个分区的连续压实失败次数超过 hive.compactor.initiator.failed.compacts.threshold,这个分区的自动压缩调度将停止。
● Worker
每个Worker处理一个压缩任务。 一个压缩是一个MapReduce作业,其名称为以下形式。-compactor-..。 每个Worker将作业提交给集群(如果定义了hive.compactor.job.queue),并等待作业完成。hive.compactor.worker.threads决定了每个Metastore中Worker的数量。 Hive仓库中的Worker总数决定了并发压缩的最大数量。
● Cleaner
这个进程是在压缩后,在确定不再需要delta文件后,将其删除。
● AcidHouseKeeperService
这个进程寻找那些在hive.txn.timeout时间内没有心跳的事务并中止它们。系统假定发起交易的客户端停止心跳后崩溃了,它锁定的资源应该被释放。
● SHOW COMPACTIONS
该命令显示当前运行的压实和最近的压实历史(可配置保留期)的信息。这个历史显示从HIVE-12353开始可用。
● Compact 重点配置
2、如何 debug Hive
debug hive client
hive --debug
debug hive metastore
hive --service metastore --debug:port=8881,mainSuspend=y,childSuspend=n --hiveconf hive.root.logger=DEBUG,console
debug hive mr 任务
3、读写过滤和CompactorMR排序的关键代码
4、Minor&Major 合并源码(CompactorMR Map 类)
四、ChunJun 文件系统未来规划
最后为大家介绍ChunJun 文件系统未来规划:
● 基于 FLIP-27 优化文件系统
批流统一实现,简单的线程模型,分片和读数据分离。
● Hive 的分片优化
分片更精细化,粒度更细,充分发挥并发能力
● 完善 Exactly Once 语义
加强异常情况健壮性。
● HDFS 文件系统的断点续传
根据分区,文件个数,文件行数等确定端点位置,状态存储在 checkpoint 里面。
● 实时采集文件
实时监控目录下的多个追加文件。
● 文件系统格式的通用性
JSON、CSV、Text、XM、EXCELL 统一抽取公共包。
你可能感兴趣的:(大数据githubspring)
使用 Hadoop 实现大数据的高效存储与查询
王子良.
经验分享 大数据 hadoop 分布式
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
《守护数据隐私的堡垒:构建基于差分隐私的MySQL匿名化处理系统》
墨夶
数据库学习资料2 mysql android 数据库
在大数据时代,个人隐私保护的重要性日益凸显。随着全球范围内对用户信息保护意识的增强以及相关法律法规(如GDPR、CCPA等)的出台,企业面临着前所未有的挑战——如何在利用海量数据创造价值的同时,确保这些数据不会泄露用户的敏感信息。为了应对这一难题,差分隐私(DifferentialPrivacy,DP)作为一种强大的数学工具应运而生。它不仅能够有效地抵御各种形式的重识别攻击,而且还可以保持数据集统
R语言的并发编程
技术的探险家
包罗万象 golang 开发语言 后端
R语言的并发编程引言在现代计算中,如何有效地利用计算资源进行数据处理和分析已成为一个重要的研究方向。尤其在大数据时代,数据量的急剧增加让单线程处理方式显得力不从心。为了解决这一问题,各种编程语言都开展了并发编程的研究和应用。R语言作为一种广泛应用于统计分析和数据科学的语言,也为并发编程提供了强大的支持。本文将介绍R语言的并发编程,包括其基本概念、常用包、应用示例以及实用技巧。一、并发编程基础并发编
Azure Synapse Dedicated SQL Pool通过配置选项和参数优化性能
weixin_30777913
云计算 azure
配置选项与参数分布键(DistributionKey):•选择:在大数据量表中,选择经常用于JOIN、WHERE条件中的列作为分布键,如Date、ID等。•策略:对于范围查询,使用HASH分布避免数据倾斜;对于维度表,通常选择ROUND-ROBIN分布。索引:•类型:聚集列存储索引(CCI)针对大型数据扫描和聚合进行了优化。•策略:始终对大型事实表使用CCI,避免在大型表上使用传统的行存储索引。分
大数据最新医学图像分割 3D nnUNet全流程快速实现_医学图像分割步骤
2401_84182020
程序员 大数据
第一步:选择一个你能找的路径位置(这很重要),在这个位置打开终端,输入gitclonehttps://github.com/MIC-DKFZ/nnUNet.git,将nnUNet的代码下载到这个位置第二步:终端内定位到下载的nnUNet文件夹cdnnUNet,或者直接在对应位置打开终端第三步:开始安装,pipinstall-e.2数据整理2.1数据存放形式首先,nnUNet有自己的一套数据文件夹的
大数据毕业设计—基于python+Django自然灾害频发地区情况数据分析系统
qq_1406299528
python 计算机毕业设计 python 大数据 课程设计
一、项目技术开发语言:Pythonpython框架:Django软件版本:python3.7/python3.8数据库:mysql5.7或更高版本数据库工具:Navicat11开发软件:PyCharm/vscode前端框架:vue.js二、项目内容和项目介绍 1.项目内容 1.开发语言:该系统采用Python作为开发语言,Python具有优雅的语法和动态类型,以及解释型语言的本质,使其成为许多
LabVIEW 蔬菜精密播种监测系统
LabVIEW开发
LabVIEW开发案例 LabVIEW开发案例
在当前蔬菜播种工作中,存在着诸多问题。一方面,播种精度难以达到现代农业的高标准要求,导致种子分布不均,影响作物的生长发育和最终产量;另一方面,对于小粒径种子,传统的监测手段难以实现有效监测,使得播种过程中的质量把控成为难题。为了攻克这些难题,设计了一套基于光纤传感器与LabVIEW的单粒精密播种监测系统。该系统充分发挥高精度传感器的感知能力以及先进软件的强大数据处理与控制能力,显著提高了播种作业的
【2025最新计算机毕业设计】基于SSM的旅游与自然保护平台【提供源码+答辩PPT+文档+项目部署】
万码堂源码
计算机毕设精品实战案例 实战项目源码 课程设计 vue.js 前端 计算机毕业设计 毕设项目 spring boot
作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等。业务范围:免费功能设计、开题报告、任务书
【源码+文档】基于SpringBoot+Vue旅游网站系统【提供源码+答辩PPT+参考文档+项目部署】
万码堂源码
实战项目源码 计算机毕设精品实战案例 spring boot vue.js 旅游
作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等。业务范围:免费功能设计、开题报告、任务书
【大数据学习 | kafka】kafka的组件架构
Vez'nan的幸福生活
大数据 mysql oracle json sql kafka
broker:每个kafka的机器节点都会运行一个进程,这个进程叫做broker,负责管理自身的topic和partition,以及数据的存储和处理,因为kafka是集群形式的,所以一个集群中会存在多个broker,但是kafka的整体又不是一个主从集群,需要选举出来一个broker节点为主节点,管理整个集群中所有的数据和操作,以及所有节点的协同工作。每个broker上面都存在一个controll
大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据 离线数仓 大数据 数据仓库 java 后端 hadoop hive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
产品解读 | 构建数智融合时代下的一站式大数据平台
随着智能化技术的飞速发展,尤其是以生成式AI为代表的技术快速应用,推动了数据与智能的深化融合,给数据基础设施带来了新的变革和挑战。如何简化日益复杂的系统架构,提高数据处理效率,降低开发运维成本,促进数据开放共享和创新应用,成为企业关注的核心问题。一站式大数据平台,旨在通过一个平台即可满足各类业务需求,成为数智融合时代下数据基础设施的发展趋势,并从四个维度向四个“一体化”方向演进:数据架构-湖仓集一
小北的技术博客:探索华为昇腾CANN训练营与AI技术创新——Ascend C算子开发能力认证考试(初级)
Stitch .
C语言 HUAWEI 算法 人工智能 华为 大数据 HUAWEI AScend c语言 NPU
前言哈喽哈喽友友们,这里是zyll~(小北)智慧龙阁的创始人及核心技术开发者。在技术的广阔天地里,我专注于大数据与全栈开发,并致力于成为这一领域的新锐力量。通过智慧龙阁这个平台,我期望能与大家分享我的技术心得,共同探索技术的无限可能。AscendC编程:小北的技术之旅近期,我深入研究了AscendC编程,并整理了一系列关于AscendC算子开发能力认证考试(初级)的题目及其答案。我希望这些内容能为
Python 爬虫:获取网页数据的 5 种方法
王子良.
经验分享 python python 开发语言 爬虫
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
Linux内核性能调优:让系统飞起来的秘籍
深度Linux
性能优化 linux LInux内核 c++
在当今数字化时代,Linux系统凭借其强大的稳定性、开放性和灵活性,广泛应用于服务器、云计算、大数据等诸多领域。然而,随着业务量的不断增长和应用场景的日益复杂,Linux内核的性能面临着巨大挑战。哪怕是微小的性能瓶颈,都可能像滚雪球一样,在高负载运行时被无限放大,进而引发一系列严重问题。想象一下,一个电商网站在购物高峰期,由于Linux内核性能不佳,导致服务器响应迟缓。用户点击商品详情,页面却迟迟
星环科技×恒生电子,联合打造反洗钱解决方案
人工智能
随着反洗钱行为更具隐蔽性、多样性和跨区域性,金融机构的反洗钱能力也相应面临新一轮升级。将大数据技术应用于反洗钱领域,可借助大数据平台高效整合、分析海量客户身份信息和交易数据,保障反洗钱系统有效开展客户风险等级评定、可疑交易筛查、黑名单监测等工作,为反洗钱工作赋能。近日,星环科技与恒生电子联合发布反洗钱解决方案,系统覆盖金融机构全业务全客户全流程,满足客户尽调、大额可疑交易检测、名单筛查、自评估等各
Transwarp Data Studio 4.0 :适应AI新时代实现三大能力提升
人工智能
企业数据资产管理能力建设需要经历资源化、资产化和资本化三个阶段,对应数据底座建设、资产管理平台建设、流通运营平台建设三大任务。星环科技大数据开发工具TranswarpDataStudio,在此过程中发挥着承上启下的关键作用。近日,星环科技重磅发布大数据开发工具TranswarpDataStudio4.0版本,新版针对数据资产运营和语料管理的过程实现了三大能力提升。第一,提升了数据管理的广度:为应对
推荐文章:libpopcnt——高效位计数的神器
胡蓓怡
推荐文章:libpopcnt——高效位计数的神器libpopcntFastC/C++bitpopulationcountlibrary项目地址:https://gitcode.com/gh_mirrors/li/libpopcnt在数字处理和大数据分析的世界里,每毫秒的性能提升都是宝贵的。今天,我们要向大家隆重介绍一个名为libpopcnt的开源库,它专为快速计算数组中“1”比特的数量而生,是优化
什么是数据仓库?
狮歌~资深攻城狮
数据仓库
什么是数据仓库?数据仓库(DataWarehouse,简称DW)是一种面向分析和决策的数据存储系统,它将企业中分散的、异构的数据按照一定的主题和模型进行集成和存储,为数据分析、报表生成以及商业智能(BI)提供支持。数据仓库是大数据体系的重要组成部分,主要用于对大量历史数据的存储、处理和分析。简单来说,数据仓库是一个为数据分析和业务决策服务的系统,通过整合来自不同来源的数据,形成面向主题的、可查询的
如何实现集群部署
DaXiongJoker
持续部署 nginx java
集群部署是指将多个计算节点(通常是服务器)组合在一起,形成一个协同工作的系统,以提供更高的性能、可用性和可靠性。集群部署广泛应用于各种场景,如Web服务、数据库、大数据处理等。以下是关于集群部署的详细解释:1.基本概念集群(Cluster):一组相互连接的计算机,它们协同工作以提供单一的计算资源。节点(Node):集群中的每个计算机或服务器,负责执行特定的任务。2.主要目的高性能:通过并行处理任务
MongoDB深度解析与实践案例
我的运维人生
mongodb 数据库 运维开发 技术共享
MongoDB深度解析与实践案例在当今大数据与云计算盛行的时代,NoSQL数据库以其灵活的数据模型、水平扩展能力和高性能,成为处理海量数据的重要工具之一。MongoDB,作为NoSQL数据库的杰出代表,凭借其面向文档的存储结构、强大的查询语言以及丰富的生态系统,赢得了众多开发者和企业的青睐。本文将深入探讨MongoDB的核心特性、架构设计原则,并通过一个实际案例展示其在实际项目中的应用。一、Mon
MongoDB深度解析与实践案例
我的运维人生
mongodb 数据库 运维开发 技术共享
MongoDB深度解析与实践案例在当今大数据与云计算蓬勃发展的时代,NoSQL数据库以其灵活的数据模型、水平扩展能力和高性能,成为处理海量数据的重要工具。其中,MongoDB作为NoSQL数据库的佼佼者,凭借其面向文档的存储方式、强大的查询语言以及丰富的生态系统,在各类应用场景中大放异彩。本文将深入探讨MongoDB的核心特性、架构设计原则,并通过实际代码案例展示其在数据处理中的应用。一、Mong
2024年最新Python:Page Object设计模式_python page object,BTAJ大厂最新面试题汇集
m0_60707708
程序员 python 设计模式 开发语言
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
PolarDB for MySQL 三大核心之一POLARFS 今天扒开它--- 嘛是火星人
Austindatabases
mysql 数据库
开头还是介绍一下群,如果感兴趣PolarDB,MongoDB,MySQL,PostgreSQL,Redis,OceanBase,SqlServer等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系liuaustin3,(共2600人左右1+2+3+4+5+6+7+8)(123456群均已爆满,新人进7群,8群,准备9群)PoalrDB这块,目前国内的博客在用户这个序列
Linux内核性能调优:让系统飞起来的秘籍
在当今数字化时代,Linux系统凭借其强大的稳定性、开放性和灵活性,广泛应用于服务器、云计算、大数据等诸多领域。然而,随着业务量的不断增长和应用场景的日益复杂,Linux内核的性能面临着巨大挑战。哪怕是微小的性能瓶颈,都可能像滚雪球一样,在高负载运行时被无限放大,进而引发一系列严重问题。想象一下,一个电商网站在购物高峰期,由于Linux内核性能不佳,导致服务器响应迟缓。用户点击商品详情,页面却迟迟
AI Agent:一场智能革命的开始
TechubNews
人工智能
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
三个案例,快速了解星环科技如何助力医疗数字化转型
科技医疗it
星环科技基于自身的技术优势和产品体系,为医疗行业提供湖仓集一体化医院数据中心、云原生架构的区域医疗中台、医疗数据要素运营流通等解决方案,并在业务应用领域与生态伙伴联合打造端到端的整体解决方案,满足医疗行业专业领域、复杂场景下的数字化转型需求。星环科技助力某三甲医院打造湖仓集一体大数据底座某大型综合三甲医院为解决全院各业务系统数据统一采集、存储、实时共享问题,联合星环科技打造“湖仓集”一体的技术底座
案例分享| 某港口集团企业级数据管理及分析应用体系构建
数据分析
平台工具体系|数据治理某港口集团已建成多个信息化系统,充分满足集团职能管理方面的需求,但垂直化的职能管理使各职能领域的指标体系、业务流程和业务系统呈现出条状划分的鲜明特点,数据共享存在“壁垒”,缺少横向的业务流程梳理和贯通,导致港口数据标准不统一、各业务系统数据“孤岛化”明显,特别是随着对数据增值利用和精细化管理要求的逐步提高,已难以应对日趋复杂的业务需求。通过运用大数据基础平台TDH、大数据开发
【武汉东湖学院主办 | ACM出版 | 高录用 | 快检索】第六届计算机信息和大数据应用国际学术会议(CIBDA 2025)
艾思科蓝 AiScholar
学术会议 计算机科学 计算机技术工程 大数据 信息可视化 软件工程 人工智能 分布式 深度学习 算法
大会官网:www.ic-cibda.org【参会投稿】大会时间:2025年3月14-16日大会地点:中国-武汉论文出版:会议投稿经过2-3位组委会专家严格审核后,最终所录用的论文将被ACMICPS(ACMInternationalConferenceProceedingSeries)出版论文集,并提交至ACMDigitallibrary,EICompendex,Scopus检索。目前该会议论文检索
“大数据+技校”:VR虚拟仿真实训室的发展前景
武汉唯众智创
大数据 vr 大数据实训室 大数据实验室 大数据VR实训室
在技术教育的新时代,大数据与虚拟现实技术的融合正在重塑技校的教学模式。"大数据+技校"模式下的VR虚拟仿真实训室,为技校学生提供了一个创新的学习平台,预示着教育方式的深刻变革。一、大数据与技校教育的深度融合大数据技术的应用为技校教育带来了前所未有的机遇。通过收集和分析学生的学习数据、行为数据以及就业数据等,技校能够更准确地了解学生的学习情况、技能掌握程度和就业需求,从而为学生提供更加个性化的学习方
Spring的注解积累
yijiesuifeng
spring 注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
传感器
百合不是茶
android 传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
[光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
PHP:6种方法获取文件的扩展名
IT独行者
PHP 扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
XML的四种解析方式
小桔子
dom jdom dom4j sax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
wordpress中常见的操作
aichenglong
中文注册 wordpress 移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
励志经典语录
bijian1013
励志 人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
[MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EE Hibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
Netty源码学习-FrameDecoder
bylijinnan
java netty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
hive 客户端查询报堆内存溢出解决方法
daizj
hive 堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
在tomcat上面安装solr4.8.0全过程
eksliang
Solr solr4.0后的版本安装 solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞 android APP 分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
HoverTree项目已经实现分层
hvt
编程 .net Web C# ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
jQuery选择器总结
lq38366
jquery 选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
基础数据结构和算法六:Quick sort
sunwinner
Algorithm Quicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
html Web
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
Mybatis实用Mapper SQL汇总示例
wdmcygah
sql mysql mybatis 实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,