51Nod-1232-完美数

ACM模版

描述

51Nod-1232-完美数_第1张图片

题解

这里要求数的值整除以所有位的值,除 0 以外,所以也就很容易想到,这个数一定是要整除这些位数的最小公倍数,而这些数范围是 19,所以最小公倍数最大也就是 2520 ,记录数对 2520 的余数即可,并且这里由于公倍数的数量很少,不超过五十个,所以先离散化一下优化优化,剩下的就是典型的数位 dp 了。

代码

#include 
#include 
#include 

using namespace std;

typedef long long ll;

const ll MOD = 2520;
const int MAXN = 22;
const int MAXM = 55;

ll x, y;
int dig[MAXN];
int _hash[MOD + 10];

ll dp[MAXN][MAXM][MOD + 10];

ll gcd(ll x, ll y)
{
    if (y == 0)
    {
        return x;
    }
    else
    {
        return gcd(y, x % y);
    }
}

void init()
{
    memset(dp, -1, sizeof(dp));

    int cnt = 0;
    for (int i = 1; i <= MOD; i++)
    {
        if (MOD % i == 0)
        {
            cnt++;
            _hash[i] = cnt;
        }
    }
}

ll dfs(ll n, ll tag = 1, ll lcm = 1, ll num = 0)
{
    if (n <= 0)
    {
        return num % lcm == 0;
    }

    if (!tag && dp[n][_hash[lcm]][num] != -1)
    {
        return dp[n][_hash[lcm]][num];
    }

    ll ans = 0;
    int end = (tag == 1) ? dig[n] : 9;
    for (int i = 0; i <= end; i++)
    {
        ll lcm_tmp;
        int m = (num * 10 + i) % MOD;
        if (i != 0)
        {
            lcm_tmp = lcm / gcd(lcm, i) * i;
        }
        else
        {
            lcm_tmp = lcm;
        }

        ans += dfs(n - 1, tag & (i == end), lcm_tmp, m);
    }

    if (!tag)
    {
        dp[n][_hash[lcm]][num] = ans;
    }

    return ans;
}

ll solve(ll x)
{
    int cnt = 0;
    memset(dig, 0, sizeof(dig));

    while (x)
    {
        cnt++;
        dig[cnt] = x % 10;
        x /= 10;
    }

    ll r = dfs(cnt);

    return r;
}

int main()
{
    init();

    int T;
    scanf("%d", &T);

    while (T--)
    {
        scanf("%lld%lld", &x, &y);
        printf("%lld\n", solve(y) - solve(x - 1));
    }

    return 0;
}

你可能感兴趣的:(动态规划,51Nod-题解集锦,数位dp)