【医学影像系列三】青光眼诊断眼底图像数据集|代码|论文总结|结果汇总|名词解析|评价指标

导语:这是之前做青光眼诊断研究时候整理的资料,所有的文章数字编号都对应我之前发表的论文阅读博客,比如方法汇总 No.15 对应【医学+深度论文:F15】这篇文章。有一些对大家有用但是我没有用到的学习资料也放在文中。汇总整理难免有遗漏,希望大家能够提出和补充,谢谢~

Dataset

数据集汇总

Dataset Name & Paper Country Photo Feature Equipment disease
Drishti-GS Retinal image dataset for optic nerve head(ONH) segmentation
Paper
India 101 OD/OC FOV 30°
2896×1944
png
Glaucoma
DRIONS-DB Identification of the optic nerve head with genetic algorithms
Paper
110 OD 600×400 Glaucoma
HRF High-Resolution Fundus (HRF) Image Database 15N,G15,DR15 vessel segment Canon CR-1 fundus camera
FOV 45°
Glaucoma
DR
ORIGA Digital Retinal Images for Vessel Extraction
ORIGA-light Paper
650(168G、482N) OD/OC
3072×2048
RIM-ONE An open retinal image database for optic nerve evaluation
Paper
455 (255 N,200G)

159 (74G,85N)
OD/OC Nidek AFC210 with a body of a Canon EOS 5D Mark II of 21.1 megapixels
2144×1424
RIM-ONE r1 158( 40 G ,118 N) OD/OC
RIM-ONE r2 425 (200 G , 225 N) OD/OC
RIM-ONE r3 159( 74 G, 85 N) stereo fundus
ONHSD Optic nerve head segmentation
Paper
99 (50 G,49 N) OD Canon CR6 45MNf fundus camera
FOV 45°
640×480
Glaucoma
SEED-DB
MESSIDOR Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology 1200 DR DR
SCES Singapore Chinese Eye Study 1676 (46G,1630N)
SINDI Singapore Indian Eye Study 5783(5670N,113G)
REFUGE 400 (360N , 40 G) macula/OD Zeiss Visucam 500
2124x2056
GRI GRI’s Sustainability Disclosure Database
DIARETDB1 DIARETDB1-Standard Diabetic Retinopathy Database Calibration level 1
STARE Structured Analysis of the Retina
sjchoi86-HRF
ACRIMA
Tajimi The Tajimi study report 2:prevalence of primary angle closure and secondary glaucoma in a Japanese population Japan 162 (81 NFLDs , 81 N)
261 (130 NFLDs ,131 N)
NFLD IMAGEnet digital fundus camera system (TRC-NW6S, Topcon, Tokyo, Japan)
768x576,JPEG
AREDS Age-Related Eye Disease Study–Results AMD /cataract

其他

下面是待整理数据集,大家有需要可以自己查,我当时没有用到这些。

Website. http://www.ukbio- bank.ac.uk/about-biobank-uk. Accessed December 5, 2018

OD

SiMES
INSPIRE-AVR
Shifa
3CHASE-DB1
3
DIARETDB1
DIARETDB1
DIARETDB0
CHASE-DB1

OC
Bin Rushed
Magrabi

标注相关工具

Tools introduce Reference Introduce
labelme 分割 、分类 https://blog.csdn.net/heiheiya/article/details/88342597 最著名的标注工具之一,虽然其用户界面有点慢,特别是缩放高清图像时。
RectLabel 简单易用,只在 Mac 可用。
LabelBox 对于大型标记项目很合适,提供不同类型标记任务的选项。
COCO UI 用于标注 COCO 数据集的工具。

数据集相关代码

dataset - introduce github
Grishti-GS1 2015 An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images https://github.com/NupurBhaisare/Cup-and-disc-segmentation-for-glaucoma-detection-CDR-Calculation-
Grishti-GS1 MICCAI 2018 Towards a glaucoma risk index based on simulated hemodynamics from fundus images https://github.com/ignaciorlando/glaucoma-hemodynamics
Grishti-GS1
RIMONE
keras GAN For Glaucome segmentation https://github.com/tomazrvb/Paper/tree/d638050a3cad67a9c00bd9977be8a01877bdc5e7
Grishti-GS1 2017 F21 复现 https://github.com/abhinav-iiit/fundus-image-segmentation
Grishti-GS1 2017 CVPR keras F21 https://github.com/seva100/optic-nerve-cnn
- pytorch retinal-cGAN https://github.com/shuangyueliao/retinal-cGAN

论文

常见会议&期刊

TOP introduce
1 ISBI The IEEE International Symposium on Biomedical Imaging
2 MICCA International Conference on Medical Image Computing and Computer-Assisted Intervention 医学影像分析 (Medical Image Analysis) 研究领域的顶尖年会
3 CVPR IEEE Conference on Computer Vision and Pattern Recognition 计算机视觉和模式识别领域的顶级会议
4 IEEE TMI transactions on medical imaging 医学图像处理顶级的顶级期刊,生物医学图像。
5 - Medical Image Analysis 医学影像分析期刊
6 MICS 国内医学图像领域规模最大的学术会议之一

论文期刊会议索引

N - - introduce -
4 IPMI Information Processing in Medical Imaging
4 - OPHTHALMOLOGY SCI 1
5 KBS Knowledge-Based Systems SCI
6 - Ophthalmology Glaucoma SCI 2
7 ICTAI IEEE International Conference on Tools with Artificial Intelligence
8 ICIP IEEE International Conference on Image Processing
9 SSD
10 - scientific reports SCI 3
11 Information Sciences SCI 2
12 PLOS ONE SCI 3
- PLOS MED SCI 1
13 IJACSA International Journal of Advanced Computer Science and Applications
14 T-MI IEEE Transactions on Medical Imaging SCI 2
15 EMBC IEEE Engineering in Medicine and Biology Society
16 Computerized Medical Imaging and Graphics SCI 4 36
17 Journal of Intelligent Systems SCI 2
18 BMC Medical Imaging SCI 4
- BMC Ophthalmology SCI 4
19 IOVS investigatice ophthalmology & visual science SCI 2
20 OMIA Ophthalmic Medical Image Analysis 2/1
21 American Journal of Ophthalmology SCI 2
22 Journal of Glaucoma SCI 4
23 JAMA Ophthalmol SCI 2 35

其他

N - - introduce
PRCV 中国模式识别与计算机视觉大会
CCF-GAIR 全球人工智能与机器人峰会

方法汇总

Classification
Segmentation
Detection
Fundus
OCT
VF
No. Position Method Introduce
C F 1 global Image Inception-v3 三分类(unlikely,suspect, certain)
C+S F 2 global Image + domain knowledge feature Faster Rcnn,CNN,FCN,MB-NN (multi-brance neural network model)
C F 3 OD difference-of-Gaussian blob detector + Resnet50 二分类(青光眼/正常眼)
S F 4 OD/OC 定位 Daubechies wavelet transform + 去血管 + 9-layer CNN CDR
S F 5 OD/OC FCN + Post-processing CDR
S+C F 6 OD/OC ROI extraction + Multi-task CNN + Post-processing 二分类(青光眼/正常眼)
C F 7 OD CNN+SVM 二分类(青光眼/正常眼)
C F 8 ONH transfer Resnet50 二分类(青光眼/正常眼)评估了几种深度学习架构和迁移学习
C F 9 global Image 18 layer CNN 二分类(青光眼/正常眼)
S+C F 10 OD ROI+Extraction+DNN(SAE)+ASM 减弱PPA对分割OD影响
C F 11 OD CNN(3con+3maxpooling+2FC) 二分类(青光眼/正常眼)晚期和早期青光眼检测
C F 12 global Image Glaucoma-Deep(CNN,DBM,softmax) 二分类(青光眼/正常眼)
C F 13 global Image ResNet CNN、SVM、Random Forest对比
S F 14 OD、OC Polar coordinate + M-Net (Multi-Scale input layer + U-Net +Side-Output Layer + Multi-Label Loss Function) CDR
C F 15 global Image + local Image(optic disk region) DENet(4个流) Disc-aware,Multi-level ,multi-model
C F 16 global Image CNN (4con+4fc) 二分类(青光眼/正常眼)
C F 17 global Image 基于RNN的补丁分类来划分真实的RNFLD边界像素 RNFLD 边界
S F 18 global Image Unet (encoder :pre-trained ResNet34) RIGA 训练;DRISHTI-GS1、RIM-ONE测试
C F 19 global Image CNN+SVM ROI deformable shape model 检测 OD边界, 集成了局部和整体特征
C F 20 global Image AG-CNN ( Attention 、Guide BP 、 ResNet) 二分类(青光眼/正常眼) 建立了一个注意力dataset
与F01/F16对比
S F 21 OD/OC crop ROI + FC-DenseNet ( FCN + DenseNet)+ Refinement
S F 34 cGAN (generator + discriminator) 分割OD

结果汇总

Paper Method Dataset OD/ DC(F) OD/ JC(O) OD / Acc OC / DC(F) OC /JC(O) OC /Acc SE SP
21 Modified U-Net CNN (DL) Drishti-GS 0.85 0.75 - - - -
35 Large pixel patch based CNN (DL) Drishti-GS 0.9373 0.8775 - - - -
33 Ensemble learning based CNN (DL) Drishti-GS 0.871 0.85 - 0.973 0.914 -
23 Fully convolutional DenseNet (DL) Drishti-GS 0.8282 0.7113 0.9948 0.949 0.9042 0.9969
14 multi-label deep learning and Polar transformation (DL) ORIGA - 0.77 - - 0.929 -
23 Fully convolutional DenseNet(DL) ORIGA 0.8659 0.7688 - 0.9653 0.9334 -
21 Modified U-Net CNN (DL) RIM-ONE 0.82 0.69 - 0.94 0.89 -
36 Fully convolutional and adversarial network (DL) RIM-ONE 0.94 0.768 0.977 0.897
21 Modified U-Net CNN (DL) DRIONS-DB 0.94 0.89
23 Fully convolutional DenseNet(DL) DRIONS-DB 0.9415 0.8912
23 Fully convolutional DenseNet(DL) ONHSD 0.9556 0.9155 0.999

名词解析

青光眼 GON

GON mean chinese
CDR cup-to disc ratio 杯盘比
杯区最大垂直高度除以盘区最大垂直高度
cpRNFLT circumpapillary retinal nerve fiber layer thickness 视网膜乳头周围神经纤维层厚度
FOV field of views 视野
GCS ganglion cells 神经节细胞
GCC ganglion cell complex 神经节细胞复合体
ISNT inferior, superior, nasal and temporal
IOP intraocular pressure 眼压
mIRT macular inner retinal thickness 黄斑内视网膜厚度
ONH optic nerve head 视神经乳头
OD optic disc 视盘
OC optic cup 视杯
ODD optic disc diameter 视杯直径
PPA peripapillary atrophy 视盘旁萎缩弧
PPA parapapillary atrophy 萎缩弧
POAG primary open-angle glaucoma 原发性开角型青光眼
PACG primary angle closure glaucoma 原发性闭角型青光眼
RNFLD retinal nerve fiber layer defects 视网膜神经纤维层缺损
RPE Retinal Pigment Epithelium 视网膜色素上皮细胞
RNFL retinal nerve fiber layer 视网膜神经纤维层
RGC retinal ganglion cells 视网膜神经节细胞
RGC+ retinal ganglion cell plus inner plexiform layer 视网膜神经节细胞加内丛状层
VCD vertical cup diameter 垂直杯径
VDD vertical disc diameter 垂直盘直径
VF visual fields
- sclera 巩膜
- choroid 脉络膜
- macula 黄斑
- vasculature hemorrhage 血管出血
- cornea 角膜
- neuroretinal rim 视网膜边缘

仪器

image mean chinese
OCT optical coherence tomography 光学相干断层成像术
CFI color fundus imaging 彩色眼底成像
MRI magnetic resonance imaging 磁共振成象
FOV field of view 视野
CAD Computer aided diagnosis 一种利用数字眼底图像对青光眼做早期诊断的无创技术
GDx scanning laser polarimetry
(GDx: Carl Zeiss Meditec, Dublin, CA)
扫描激光偏振测量仪
HRT Heidelberg Retina Tomograph
Heidelberg Engineering GmbH,Heidelberg,Germany
海德堡视网膜层析x射线摄影机
RS-3000 Advance spectral-domain OCT (RS-3000 Advance, Nidek, Gamagori, Japan) images 光谱域OCT
OA-1000 OA-1000 optical biometer (Tomey, Nagoya, Japan) 光学生物仪 (测量轴向长度)
RC-5000 RC-5000 refract-keratometer (Tomey) 折射角膜曲率计(记录屈光不正)
RC-5000 RC-5000 non-contact tonometer (Tomey) 非接触眼压计(测定IOP)
- Goldmann applanation tonometer 压平式眼压计(测定IOP)
- Kowa nonmyd WX camera 后眼底照片

其他疾病

Other disease mean chinese
DR diabetic retinopathy 糖尿病视网膜病变
- ophthalmology 眼科
- cataract 白内障
AMD age related macular degeneration 年龄相关性黄斑变性
BCVA Best-corrected visual acuity 最佳矫正视力
logMAR logarithm of the mimimum angle of resolution 最小分辨角的对数
ANOVA one-way analysis of variance 单因素方差分析
- myopia 近视

评价指标

Evalution mean chinese Math
AUC area under the receiver opterating characteristic curve 接收机光电特性曲线下面积
ROC receiver operating characteristic 受试者工作特征
AROC receiver operating characteristic curve 接受者操作特征曲线
IoU intersection over union 交并比 I o U = T P T P + F P + F N IoU = \frac{ TP}{TP+FP+FN} IoU=TP+FP+FNTP
SD standard deviation 标准偏差
CI confidence interval 置信区间
MD mean deviation 平均偏差
FP False Positive 假正例
FN False Negative 假负例
TP True Positive 真正例
TN True Negative 真负例
AC accuracy 正确率 A C = T P + T N T P + T N + F P + F N AC = \frac{ TP+TN }{TP+TN+FP+FN} AC=TP+TN+FP+FNTP+TN
SE sensitivity 灵敏度,将实际有病的人正确地判定为患者的比例。 S E = T P T P + F N SE=\frac {TP}{TP+FN} SE=TP+FNTP
SP specificity 特异度,将实际无病的人正确地判定为非患者的比例。 S P = T N T N + F P SP=\frac {TN}{TN+FP} SP=TN+FPTN
PC precision 精确率针对所有正例(TP+FP)而言
其中真正例(TP)占的比例
精确率也叫查准率
P C = T P T P + F P PC=\frac {TP}{TP+FP} PC=TP+FPTP
PPV positive predictive value 正例预测值
E overlapping error 重叠的错误 E = 1 − A r e a ( S ∩ G ) A r e a ( S ∪ G ) E = 1 - \frac{Area(S\cap G) } {Area(S \cup G )} E=1Area(SG)Area(SG)
A balanced accuracy 平均正确率
$ δ_E $ CDR error CDR减去ground truth CDR值 $$δ_E=
- Euclidean distance 欧几里得距离 (mean ± standard deviation)
- Dice coefficient $$Dice =2× \frac{
- Jaccard Index 实质是 IoU $$JS=\frac {

Example,10病人 7P,3N;
分类结果 正类6个(4P,2N) 负类4个(1N,3P)
TP : 4
TN : 2
FN : 1
FP : 3

I o U = T P T P + F P + F N IoU = \frac{ TP}{TP+FP+FN} IoU=TP+FP+FNTP

E = 1 − A r e a ( S ∩ G ) A r e a ( S ∪ G ) E = 1 - \frac{Area(S\cap G) } {Area(S \cup G )} E=1Area(SG)Area(SG)

A = 1 2 ( S E + S P ) A= \frac{1}{2}(SE + SP) A=21SE+SP

A C = T P + T N T P + T N + F P + F N AC = \frac{ TP+TN }{TP+TN+FP+FN} AC=TP+TN+FP+FNTP+TN

S E = T P T P + F N SE=\frac {TP}{TP+FN} SE=TP+FNTP

S P = T N T N + F P SP=\frac {TN}{TN+FP} SP=TN+FPTN

P C = T P T P + F P PC=\frac {TP}{TP+FP} PC=TP+FPTP

F 1 = 2 ∗ P C ∗ S E P C + S E F1=2 * \frac {PC*SE}{PC+SE} F1=2PC+SEPCSE

F − s o c r e = 2 ∗ T P 2 ∗ T P + F P + F N F-socre=\frac{2*TP}{2*TP+FP+FN} Fsocre=2TP+FP+FN2TP

δ E = ∣ C D R S − C D R G ∣ δ_E = | CDR_S - CDR_G | δE=CDRSCDRG

D i c e = 2 × ∣ S ∩ G ∣ ∣ S ∣ + ∣ G ∣ Dice =2× \frac{|S\cap G|}{|S|+ |G|} Dice=2×S+GSG

J S = ∣ G T ∩ S R ∣ ∣ G T ∪ S R ∣ = ∣ G T ∩ S R ∣ ∣ G T ∣ + ∣ S R ∣ − ∣ G T ∩ S R ∣ JS=\frac { |{GT}\cap{SR}| }{|GT \cup SR|}=\frac { |{GT}\cap{SR}| }{|GT |+|SR|-|{GT}\cap{SR}|} JS=GTSRGTSR=GT+SRGTSRGTSR

你可能感兴趣的:(医学影像,青光眼,GON,深度学习,代码,眼底图像)