导语:这是之前做青光眼诊断研究时候整理的资料,所有的文章数字编号都对应我之前发表的论文阅读博客,比如方法汇总 No.15 对应【医学+深度论文:F15】这篇文章。有一些对大家有用但是我没有用到的学习资料也放在文中。汇总整理难免有遗漏,希望大家能够提出和补充,谢谢~
Dataset | Name & Paper | Country | Photo | Feature | Equipment | disease |
---|---|---|---|---|---|---|
Drishti-GS | Retinal image dataset for optic nerve head(ONH) segmentation Paper |
India | 101 | OD/OC | FOV 30° 2896×1944 png |
Glaucoma |
DRIONS-DB | Identification of the optic nerve head with genetic algorithms Paper |
110 | OD | 600×400 | Glaucoma | |
HRF | High-Resolution Fundus (HRF) Image Database | 15N,G15,DR15 | vessel segment | Canon CR-1 fundus camera FOV 45° |
Glaucoma DR |
|
ORIGA | Digital Retinal Images for Vessel Extraction ORIGA-light Paper |
650(168G、482N) | OD/OC | 3072×2048 |
||
RIM-ONE | An open retinal image database for optic nerve evaluation Paper |
455 (255 N,200G) 159 (74G,85N) |
OD/OC | Nidek AFC210 with a body of a Canon EOS 5D Mark II of 21.1 megapixels 2144×1424 |
||
RIM-ONE r1 | 158( 40 G ,118 N) | OD/OC | ||||
RIM-ONE r2 | 425 (200 G , 225 N) | OD/OC | ||||
RIM-ONE r3 | 159( 74 G, 85 N) | stereo fundus | ||||
ONHSD | Optic nerve head segmentation Paper |
99 (50 G,49 N) | OD | Canon CR6 45MNf fundus camera FOV 45° 640×480 |
Glaucoma | |
SEED-DB | ||||||
MESSIDOR | Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology | 1200 | DR | DR | ||
SCES | Singapore Chinese Eye Study | 1676 (46G,1630N) | ||||
SINDI | Singapore Indian Eye Study | 5783(5670N,113G) | ||||
REFUGE | 400 (360N , 40 G) | macula/OD | Zeiss Visucam 500 2124x2056 |
|||
GRI | GRI’s Sustainability Disclosure Database | |||||
DIARETDB1 | DIARETDB1-Standard Diabetic Retinopathy Database Calibration level 1 | |||||
STARE | Structured Analysis of the Retina | |||||
sjchoi86-HRF | ||||||
ACRIMA | ||||||
Tajimi | The Tajimi study report 2:prevalence of primary angle closure and secondary glaucoma in a Japanese population | Japan | 162 (81 NFLDs , 81 N) 261 (130 NFLDs ,131 N) |
NFLD | IMAGEnet digital fundus camera system (TRC-NW6S, Topcon, Tokyo, Japan) 768x576,JPEG |
|
AREDS | Age-Related Eye Disease Study–Results | AMD /cataract |
下面是待整理数据集,大家有需要可以自己查,我当时没有用到这些。
Website. http://www.ukbio- bank.ac.uk/about-biobank-uk. Accessed December 5, 2018
OD
SiMES
INSPIRE-AVR
Shifa
3CHASE-DB1
3DIARETDB1
DIARETDB1
DIARETDB0
CHASE-DB1
OC
Bin Rushed
Magrabi
Tools | introduce | Reference | Introduce |
---|---|---|---|
labelme | 分割 、分类 | https://blog.csdn.net/heiheiya/article/details/88342597 | 最著名的标注工具之一,虽然其用户界面有点慢,特别是缩放高清图像时。 |
RectLabel | 简单易用,只在 Mac 可用。 | ||
LabelBox | 对于大型标记项目很合适,提供不同类型标记任务的选项。 | ||
COCO UI | 用于标注 COCO 数据集的工具。 |
dataset | - | introduce | github |
---|---|---|---|
Grishti-GS1 | 2015 | An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images | https://github.com/NupurBhaisare/Cup-and-disc-segmentation-for-glaucoma-detection-CDR-Calculation- |
Grishti-GS1 | MICCAI 2018 | Towards a glaucoma risk index based on simulated hemodynamics from fundus images | https://github.com/ignaciorlando/glaucoma-hemodynamics |
Grishti-GS1 RIMONE |
keras | GAN For Glaucome segmentation | https://github.com/tomazrvb/Paper/tree/d638050a3cad67a9c00bd9977be8a01877bdc5e7 |
Grishti-GS1 | 2017 | F21 复现 | https://github.com/abhinav-iiit/fundus-image-segmentation |
Grishti-GS1 | 2017 CVPR keras | F21 | https://github.com/seva100/optic-nerve-cnn |
- | pytorch | retinal-cGAN | https://github.com/shuangyueliao/retinal-cGAN |
⭐ | TOP | introduce | |
---|---|---|---|
1 | ISBI | The IEEE International Symposium on Biomedical Imaging | ⭐ |
2 | MICCA | International Conference on Medical Image Computing and Computer-Assisted Intervention | 医学影像分析 (Medical Image Analysis) 研究领域的顶尖年会 |
3 | CVPR | IEEE Conference on Computer Vision and Pattern Recognition | 计算机视觉和模式识别领域的顶级会议 |
4 | IEEE TMI | transactions on medical imaging | 医学图像处理顶级的顶级期刊,生物医学图像。 |
5 | - | Medical Image Analysis | 医学影像分析期刊 |
6 | MICS | 国内医学图像领域规模最大的学术会议之一 |
N | - | - | introduce | - |
---|---|---|---|---|
4 | IPMI | Information Processing in Medical Imaging | ⭐ | |
4 | - | OPHTHALMOLOGY | SCI 1 | |
5 | KBS | Knowledge-Based Systems | SCI | |
6 | - | Ophthalmology Glaucoma | SCI 2 | |
7 | ICTAI | IEEE International Conference on Tools with Artificial Intelligence | ||
8 | ICIP | IEEE International Conference on Image Processing | ||
9 | SSD | |||
10 | - | scientific reports | SCI 3 | |
11 | Information Sciences | SCI 2 | ||
12 | PLOS ONE | SCI 3 | ||
- | PLOS MED | SCI 1 | ||
13 | IJACSA | International Journal of Advanced Computer Science and Applications | ||
14 | T-MI | IEEE Transactions on Medical Imaging | SCI 2 | |
15 | EMBC | IEEE Engineering in Medicine and Biology Society | ||
16 | Computerized Medical Imaging and Graphics | SCI 4 | 36 | |
17 | Journal of Intelligent Systems | SCI 2 | ||
18 | BMC Medical Imaging | SCI 4 | ||
- | BMC Ophthalmology | SCI 4 | ||
19 | IOVS | investigatice ophthalmology & visual science | SCI 2 | |
20 | OMIA | Ophthalmic Medical Image Analysis | 2/1 | |
21 | American Journal of Ophthalmology | SCI 2 | ||
22 | Journal of Glaucoma | SCI 4 | ||
23 | JAMA Ophthalmol | SCI 2 | 35 |
N | - | - | introduce |
---|---|---|---|
PRCV | 中国模式识别与计算机视觉大会 | ||
CCF-GAIR | 全球人工智能与机器人峰会 |
Classification Segmentation Detection |
Fundus OCT VF |
No. | Position | Method | Introduce |
---|---|---|---|---|---|
C | F | 1 | global Image | Inception-v3 | 三分类(unlikely,suspect, certain) |
C+S | F | 2 | global Image + domain knowledge feature | Faster Rcnn,CNN,FCN,MB-NN (multi-brance neural network model) | |
C | F | 3 | OD | difference-of-Gaussian blob detector + Resnet50 | 二分类(青光眼/正常眼) |
S | F | 4 | OD/OC | 定位 Daubechies wavelet transform + 去血管 + 9-layer CNN | CDR |
S | F | 5 | OD/OC | FCN + Post-processing | CDR |
S+C | F | 6 | OD/OC | ROI extraction + Multi-task CNN + Post-processing | 二分类(青光眼/正常眼) |
C | F | 7 | OD | CNN+SVM | 二分类(青光眼/正常眼) |
C | F | 8 | ONH | transfer Resnet50 | 二分类(青光眼/正常眼)评估了几种深度学习架构和迁移学习 |
C | F | 9 | global Image | 18 layer CNN | 二分类(青光眼/正常眼) |
S+C | F | 10 | OD | ROI+Extraction+DNN(SAE)+ASM | 减弱PPA对分割OD影响 |
C | F | 11 | OD | CNN(3con+3maxpooling+2FC) | 二分类(青光眼/正常眼)晚期和早期青光眼检测 |
C | F | 12 | global Image | Glaucoma-Deep(CNN,DBM,softmax) | 二分类(青光眼/正常眼) |
C | F | 13 | global Image | ResNet | CNN、SVM、Random Forest对比 |
S | F | 14 | OD、OC | Polar coordinate + M-Net (Multi-Scale input layer + U-Net +Side-Output Layer + Multi-Label Loss Function) | CDR |
C | F | 15 | global Image + local Image(optic disk region) | DENet(4个流) | Disc-aware,Multi-level ,multi-model |
C | F | 16 | global Image | CNN (4con+4fc) | 二分类(青光眼/正常眼) |
C | F | 17 | global Image | 基于RNN的补丁分类来划分真实的RNFLD边界像素 | RNFLD 边界 |
S | F | 18 | global Image | Unet (encoder :pre-trained ResNet34) | RIGA 训练;DRISHTI-GS1、RIM-ONE测试 |
C | F | 19 | global Image | CNN+SVM | ROI deformable shape model 检测 OD边界, 集成了局部和整体特征 |
C | F | 20 | global Image | AG-CNN ( Attention 、Guide BP 、 ResNet) | 二分类(青光眼/正常眼) 建立了一个注意力dataset 与F01/F16对比 |
S | F | 21 | OD/OC | crop ROI + FC-DenseNet ( FCN + DenseNet)+ Refinement | |
S | F | 34 | cGAN (generator + discriminator) | 分割OD |
Paper | Method | Dataset | OD/ DC(F) | OD/ JC(O) | OD / Acc | OC / DC(F) | OC /JC(O) | OC /Acc | SE | SP |
---|---|---|---|---|---|---|---|---|---|---|
21 | Modified U-Net CNN (DL) | Drishti-GS | 0.85 | 0.75 | - | - | - | - | ||
35 | Large pixel patch based CNN (DL) | Drishti-GS | 0.9373 | 0.8775 | - | - | - | - | ||
33 | Ensemble learning based CNN (DL) | Drishti-GS | 0.871 | 0.85 | - | 0.973 | 0.914 | - | ||
23 | Fully convolutional DenseNet (DL) | Drishti-GS | 0.8282 | 0.7113 | 0.9948 | 0.949 | 0.9042 | 0.9969 | ||
14 | multi-label deep learning and Polar transformation (DL) | ORIGA | - | 0.77 | - | - | 0.929 | - | ||
23 | Fully convolutional DenseNet(DL) | ORIGA | 0.8659 | 0.7688 | - | 0.9653 | 0.9334 | - | ||
21 | Modified U-Net CNN (DL) | RIM-ONE | 0.82 | 0.69 | - | 0.94 | 0.89 | - | ||
36 | Fully convolutional and adversarial network (DL) | RIM-ONE | 0.94 | 0.768 | 0.977 | 0.897 | ||||
21 | Modified U-Net CNN (DL) | DRIONS-DB | 0.94 | 0.89 | ||||||
23 | Fully convolutional DenseNet(DL) | DRIONS-DB | 0.9415 | 0.8912 | ||||||
23 | Fully convolutional DenseNet(DL) | ONHSD | 0.9556 | 0.9155 | 0.999 |
GON | mean | chinese |
---|---|---|
CDR | cup-to disc ratio | 杯盘比 杯区最大垂直高度除以盘区最大垂直高度 |
cpRNFLT | circumpapillary retinal nerve fiber layer thickness | 视网膜乳头周围神经纤维层厚度 |
FOV | field of views | 视野 |
GCS | ganglion cells | 神经节细胞 |
GCC | ganglion cell complex | 神经节细胞复合体 |
ISNT | inferior, superior, nasal and temporal | |
IOP | intraocular pressure | 眼压 |
mIRT | macular inner retinal thickness | 黄斑内视网膜厚度 |
ONH | optic nerve head | 视神经乳头 |
OD | optic disc | 视盘 |
OC | optic cup | 视杯 |
ODD | optic disc diameter | 视杯直径 |
PPA | peripapillary atrophy | 视盘旁萎缩弧 |
PPA | parapapillary atrophy | 萎缩弧 |
POAG | primary open-angle glaucoma | 原发性开角型青光眼 |
PACG | primary angle closure glaucoma | 原发性闭角型青光眼 |
RNFLD | retinal nerve fiber layer defects | 视网膜神经纤维层缺损 |
RPE | Retinal Pigment Epithelium | 视网膜色素上皮细胞 |
RNFL | retinal nerve fiber layer | 视网膜神经纤维层 |
RGC | retinal ganglion cells | 视网膜神经节细胞 |
RGC+ | retinal ganglion cell plus inner plexiform layer | 视网膜神经节细胞加内丛状层 |
VCD | vertical cup diameter | 垂直杯径 |
VDD | vertical disc diameter | 垂直盘直径 |
VF | visual fields | |
- | sclera | 巩膜 |
- | choroid | 脉络膜 |
- | macula | 黄斑 |
- | vasculature hemorrhage | 血管出血 |
- | cornea | 角膜 |
- | neuroretinal rim | 视网膜边缘 |
image | mean | chinese |
---|---|---|
OCT | optical coherence tomography | 光学相干断层成像术 |
CFI | color fundus imaging | 彩色眼底成像 |
MRI | magnetic resonance imaging | 磁共振成象 |
FOV | field of view | 视野 |
CAD | Computer aided diagnosis | 一种利用数字眼底图像对青光眼做早期诊断的无创技术 |
GDx | scanning laser polarimetry (GDx: Carl Zeiss Meditec, Dublin, CA) |
扫描激光偏振测量仪 |
HRT | Heidelberg Retina Tomograph Heidelberg Engineering GmbH,Heidelberg,Germany |
海德堡视网膜层析x射线摄影机 |
RS-3000 Advance | spectral-domain OCT (RS-3000 Advance, Nidek, Gamagori, Japan) images | 光谱域OCT |
OA-1000 | OA-1000 optical biometer (Tomey, Nagoya, Japan) | 光学生物仪 (测量轴向长度) |
RC-5000 | RC-5000 refract-keratometer (Tomey) | 折射角膜曲率计(记录屈光不正) |
RC-5000 | RC-5000 non-contact tonometer (Tomey) | 非接触眼压计(测定IOP) |
- | Goldmann applanation tonometer | 压平式眼压计(测定IOP) |
- | Kowa nonmyd WX camera | 后眼底照片 |
Other disease | mean | chinese |
---|---|---|
DR | diabetic retinopathy | 糖尿病视网膜病变 |
- | ophthalmology | 眼科 |
- | cataract | 白内障 |
AMD | age related macular degeneration | 年龄相关性黄斑变性 |
BCVA | Best-corrected visual acuity | 最佳矫正视力 |
logMAR | logarithm of the mimimum angle of resolution | 最小分辨角的对数 |
ANOVA | one-way analysis of variance | 单因素方差分析 |
- | myopia | 近视 |
Evalution | mean | chinese | Math |
---|---|---|---|
AUC | area under the receiver opterating characteristic curve | 接收机光电特性曲线下面积 | |
ROC | receiver operating characteristic | 受试者工作特征 | |
AROC | receiver operating characteristic curve | 接受者操作特征曲线 | |
IoU | intersection over union | 交并比 | I o U = T P T P + F P + F N IoU = \frac{ TP}{TP+FP+FN} IoU=TP+FP+FNTP |
SD | standard deviation | 标准偏差 | |
CI | confidence interval | 置信区间 | |
MD | mean deviation | 平均偏差 | |
FP | False Positive | 假正例 | |
FN | False Negative | 假负例 | |
TP | True Positive | 真正例 | |
TN | True Negative | 真负例 | |
AC | accuracy | 正确率 | A C = T P + T N T P + T N + F P + F N AC = \frac{ TP+TN }{TP+TN+FP+FN} AC=TP+TN+FP+FNTP+TN |
SE | sensitivity | 灵敏度,将实际有病的人正确地判定为患者的比例。 | S E = T P T P + F N SE=\frac {TP}{TP+FN} SE=TP+FNTP |
SP | specificity | 特异度,将实际无病的人正确地判定为非患者的比例。 | S P = T N T N + F P SP=\frac {TN}{TN+FP} SP=TN+FPTN |
PC | precision | 精确率针对所有正例(TP+FP)而言 其中真正例(TP)占的比例 精确率也叫查准率 |
P C = T P T P + F P PC=\frac {TP}{TP+FP} PC=TP+FPTP |
PPV | positive predictive value | 正例预测值 | |
E | overlapping error | 重叠的错误 | E = 1 − A r e a ( S ∩ G ) A r e a ( S ∪ G ) E = 1 - \frac{Area(S\cap G) } {Area(S \cup G )} E=1−Area(S∪G)Area(S∩G) |
A | balanced accuracy | 平均正确率 | |
$ δ_E $ | CDR error | CDR减去ground truth CDR值 | $$δ_E= |
- | Euclidean distance | 欧几里得距离 (mean ± standard deviation) | |
- | Dice coefficient | $$Dice =2× \frac{ | |
- | Jaccard Index | 实质是 IoU | $$JS=\frac { |
Example,10病人 7P,3N;
分类结果 正类6个(4P,2N) 负类4个(1N,3P)
TP : 4
TN : 2
FN : 1
FP : 3
I o U = T P T P + F P + F N IoU = \frac{ TP}{TP+FP+FN} IoU=TP+FP+FNTP
E = 1 − A r e a ( S ∩ G ) A r e a ( S ∪ G ) E = 1 - \frac{Area(S\cap G) } {Area(S \cup G )} E=1−Area(S∪G)Area(S∩G)
A = 1 2 ( S E + S P ) A= \frac{1}{2}(SE + SP) A=21(SE+SP)
A C = T P + T N T P + T N + F P + F N AC = \frac{ TP+TN }{TP+TN+FP+FN} AC=TP+TN+FP+FNTP+TN
S E = T P T P + F N SE=\frac {TP}{TP+FN} SE=TP+FNTP
S P = T N T N + F P SP=\frac {TN}{TN+FP} SP=TN+FPTN
P C = T P T P + F P PC=\frac {TP}{TP+FP} PC=TP+FPTP
F 1 = 2 ∗ P C ∗ S E P C + S E F1=2 * \frac {PC*SE}{PC+SE} F1=2∗PC+SEPC∗SE
F − s o c r e = 2 ∗ T P 2 ∗ T P + F P + F N F-socre=\frac{2*TP}{2*TP+FP+FN} F−socre=2∗TP+FP+FN2∗TP
δ E = ∣ C D R S − C D R G ∣ δ_E = | CDR_S - CDR_G | δE=∣CDRS−CDRG∣
D i c e = 2 × ∣ S ∩ G ∣ ∣ S ∣ + ∣ G ∣ Dice =2× \frac{|S\cap G|}{|S|+ |G|} Dice=2×∣S∣+∣G∣∣S∩G∣
J S = ∣ G T ∩ S R ∣ ∣ G T ∪ S R ∣ = ∣ G T ∩ S R ∣ ∣ G T ∣ + ∣ S R ∣ − ∣ G T ∩ S R ∣ JS=\frac { |{GT}\cap{SR}| }{|GT \cup SR|}=\frac { |{GT}\cap{SR}| }{|GT |+|SR|-|{GT}\cap{SR}|} JS=∣GT∪SR∣∣GT∩SR∣=∣GT∣+∣SR∣−∣GT∩SR∣∣GT∩SR∣