数据链路层——以太网和ARP协议

  • 以太网
    • 认识以太网
    • 认识MAC地址
    • MTU
      • MTU对IP协议的影响
      • MTU对UDP协议的影响
      • MTU对TCP协议的影响
  • ARP协议
    • 什么是ARP协议
    • ARP如何工作
    • ARP协议格式

以太网

认识以太网

“以太网” 不是一种具体的网络,而是一种技术标准,既包含了数据链路层的内容,也包含了一些物理层的内容。例如:规定了网络拓扑结构,访问控制方式,传输速率等

以太网帧格式:
数据链路层——以太网和ARP协议_第1张图片

  • 源地址和目的地址是指网卡的硬件地址(也叫MAC地址),长度是48位,是在网卡出厂时固化的
  • proto:帧协议类型字段有三种值,分别对应IP、ARP、RARP
  • 帧末尾是CRC校验码

认识MAC地址

  • MAC地址用来识别数据链路层中相连的节点长度为48位,及6个字节。一般用16进制数字加上冒号的形式来表示(例如: 08:00:27:03:fb:19)
  • 在网卡出厂时就确定了,不能修改。mac地址通常是唯一的(虚拟机中的mac地址不是真实的mac地址,可能会冲突,也有些网卡支持用户配置mac地址)

MTU

MTU: 最大传输单元,链路层限制的数据帧大小

  • 以太网帧中的数据长度规定最小46字节,最大1500字节,ARP数据包的长度不够46字节,要在后面补填充位
  • 最大值1500称为以太网的最大传输单元(MTU),不同的网络类型有不同的MTU
  • 如果一个数据包从以太网路由到拨号链路上,数据包长度大于拨号链路的MTU了,则需要对数据包进行分片
  • 不同的数据链路层标准的MTU是不同的

MTU对IP协议的影响

由于数据链路层MTU的限制,对于较大的IP数据包要进行分包

将较大的IP包分成多个小包,并给每个小包打上标签;每个小包IP协议头的16位标识(id) 都是相同的;每个小包的IP协议头的3位标志字段中,第2位置为0,表示允许分片,第3位来表示结束标记(当前是否是最后一个小包,是的话置为1,否则置为0);到达对端时再将这些小包,会按顺序重组,拼装到一起返回给传输层;一旦这些小包中任意一个小包丢失, 接收端的重组就会失败. 但是IP层不会负责重新传输数据

MTU对UDP协议的影响

一旦UDP携带的数据超过1472(1500 - 20(IP首部) – 8(UDP首部)),那么就会在网络层分成多个IP数据报。这多个IP数据报有任意一个丢失,都会引起接收端网络层重组失败。那么这就意味着,如果UDP数据报在网络层被分片,整个数据被丢失的概率就大大增加了

MTU对TCP协议的影响

TCP的一个数据报也不能无限大,还是受制于MTU。TCP的单个数据报的最大消息长度,称为MSS(Max
Segment Size);TCP在建立连接的过程中, 通信双方会进行MSS协商。最理想的情况下, MSS的值正好是在IP不会被分片处理的最大长度(这个长度仍然是受制于数据链路层的MTU)。双方在发送SYN的时候会在TCP头部写入自己能支持的MSS值。然后双方得知对方的MSS值之后,选择较小的作为最终MSS。MSS的值就是在TCP首部的40字节变长选项中

ARP协议

什么是ARP协议

ARP协议建立了主机IP地址和MAC地址的映射关系
在网络通讯时,源主机的应用程序知道目的主机的IP地址和端口号,却不知道目的主机的硬件地址。数据包首先是被网卡接收到再去处理上层协议的,如果接收到的数据包的硬件地址与本机不符,则直接丢
弃。因此在通讯前必须获得目的主机的硬件地址

ARP如何工作

源主机发出ARP请求,询问“IP地址是192.168.0.1的主机的硬件地址是多少”, 并将这个请求广播到本地网段

目的主机接收到广播的ARP请求,发现其中的IP地址与本机相符,则发送一个ARP应答数据包给源主机,将自己的硬件地址填写在应答包中

每台主机都维护一个ARP缓存表,可以用arp -a命令查看。缓存表中的表项有过期时间(一般为20分钟),如果20分钟内没有再次使用某个表项,则该表项失效,下次还要发ARP请求来获得目的主机的硬件地址

ARP协议格式

数据链路层——以太网和ARP协议_第2张图片

你可能感兴趣的:(操作系统及网络)