在部署大规模深度学习应用的时候,要想满足应用需求或者压榨模型的性能,C++可能是比python更好的选择方案。基于此,特地记录最近的C++的学习经历。其实以终为始来思考为什么学习C++,首先是为了能够很好地提升模型的性能,满足应用场景中的高可用,高并发,低时延等要求。为了提升模型的性能,需要用到一些推理框架,如TensorRT、NCNN或者Openvino(本文中以TensorRT作为案例)。TensorRT在8.0以上的版本都支持Python的API了,但还是有必要学习C++。另外在模型压缩的时候也会考虑用到C++。
确定推理框架后,然后确定这个框架需要什么格式的模型?这里面可能要提到模型集大成者ONNX,因此需要学习ONNX模型。学习如何将Tensorflow、Pytorch或者keras的模型转换成ONNX,它支持什么算子,这些都是需要学习的。
最后总结这个路线是Tensorflow或pytorch模型转换成ONNX,然后ONNX对模型进行优化,转换成TensorRT模型优化以及C++的推理。
关于ONNX的转换可以参考我的git仓库:onnx模型转换。当中包括Tensorflow和Pytorch的模型转换Demo。同时包括用onnxruntime
进行推理的过程。在这一块基本的转换过程已经转换了,后续需要更加深化,了解支持的算子,如何转换复杂模型,甚至如何写算子等都要学会。
C++需要学习基础知识,这些都不在话下了。看下书,学习视频,以下用一个C++调用ONNX模型推理作为例子,具体代码可以参考:ONNX C++
TensorRT支持三种网络的结构和参数:
综上第二点是比较经济实惠的,使用ONNX的模型的时候是尚未被优化的,因此需要用TensorRT优化特定的参数,得到TensorRT Engine模型,最后使用该模型进行推理。
trtexec 是 TensorRT sample 里的一个例子,把 TensorRT 许多方法包装成了一个可执行文件。它可以把模型优化成 TensorRT Engine ,并且填入随机数跑 inference 进行速度测试。命令./trtexec --onnx=model.onnx
把 onnx 模型优化成 Engine ,然后多次 inference 后统计并报时。也可以将ONNX模型转换成trt格式的TensorRT模型: /trtexec --onnx=model.onnx --saveEngine=xxx.trt
。trtexec作用是看模型最快能跑多快,它是不管精度的,如果真想实际部署上又快又好的模型还是要自己调 TensorRT 的 API。具体可以参考参考2。
未完待续…