消息队列的好处:
解耦合
耦合的状态表示当你实现某个功能的时候,是直接接入当前接口,而利用消息队列,可以将相应的消息发送到消息队列,这样的话,如果接口出了问题,将不会影响到当前的功能。
异步处理
异步处理替代了之前的同步处理,异步处理不需要让流程走完就返回结果,可以将消息发送到消息队列中,然后返回结果,剩下让其他业务处理接口从消息队列中拉取消费处理即可。
流量削峰
高流量的时候,使用消息队列作为中间件可以将流量的高峰保存在消息队列中,从而防止了系统的高请求,减轻服务器的请求处理压力。
# docker直接拉取kafka和zookeeper的镜像
docker pull wurstmeister/kafka
docker pull wurstmeister/zookeeper
# 首先需要启动zookeeper,如果不先启动,启动kafka没有地方注册消息
docker run -it --name zookeeper -p 12181:2181 -d wurstmeister/zookeeper:latest
# 启动kafka容器,注意需要启动三台,注意端口的映射,都是映射到9092
# 第一台
docker run -it --name kafka01 -p 19092:9092 -d -e KAFKA_BROKER_ID=0 -e KAFKA_ZOOKEEPER_CONNECT=192.168.233.129:12181 -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.233.129:19092 -e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 wurstmeister/kafka:latest
# 第二台
docker run -it --name kafka02 -p 19093:9092 -d -e KAFKA_BROKER_ID=1 -e KAFKA_ZOOKEEPER_CONNECT=192.168.233.129:12181 -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.233.129:19093 -e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 wurstmeister/kafka:latest
# 第三台
docker run -it --name kafka03 -p 19094:9092 -d -e KAFKA_BROKER_ID=2 -e KAFKA_ZOOKEEPER_CONNECT=192.168.233.129:12181 -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.233.129:19094 -e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 wurstmeister/kafka:latest
注意:上面端口的映射注意都是映射到Kafka的9092端口上!否则将不能够连接!
进入容器:一定是容器里面的bin目录下进行才行
[root@localhost ~]# docker exec -it kafka01 bash
bash-5.1# cd /opt/kafka_2.13-2.8.1/
bash-5.1# ls
LICENSE NOTICE bin config libs licenses logs site-docs
bash-5.1# cd bin
bash-5.1# pwd
/opt/kafka_2.13-2.8.1/bin
# 创建topic名称为first,3个分区,1个副本
./kafka-topics.sh --zookeeper 192.168.233.129:12181 --create --topic first --replication-factor 1 --partitions 3
# 查看first此topic信息
./kafka-topics.sh --zookeeper 192.168.233.129:12181 --describe --topic first
Topic: first PartitionCount: 3 ReplicationFactor: 1 Configs:
Topic: first Partition: 0 Leader: 2 Replicas: 2 Isr: 2
Topic: first Partition: 1 Leader: 0 Replicas: 0 Isr: 0
Topic: first Partition: 2 Leader: 1 Replicas: 1 Isr: 1
# 调用生产者生产消息
./kafka-console-producer.sh --broker-list 192.168.233.129:19092,192.168.233.129:19093,192.168.233.129:19094 --topic first
# 调用消费者消费消息,from-beginning表示读取全部的消息
./kafka-console-consumer.sh --bootstrap-server 192.168.233.129:19092,192.168.233.129:19093,192.168.233.129:19094 --topic first --from-beginning
# 删除topic
创建成功后,启动两个链接平台,一个作为消息提供者,一个作为接收者消费者。并执行上面调用生产者核消费者指令。
实验结果:
消息提供者
消息消费者
依赖:
org.springframework.kafka
spring-kafka
配置xml :
kafka:
bootstrap-servers: 192.168.232.126:19092,192.168.232.126:19093
producer:
retries: 0
acks: 1
consumer:
group-id: test-consumer-group #不加id会报错
下面是更全的配置
###########【Kafka集群】###########
spring.kafka.bootstrap-servers=192.168.232.126:19092,192.168.232.126:19093
###########【初始化生产者配置】###########
# 重试次数
spring.kafka.producer.retries=0
# 应答级别:多少个分区副本备份完成时向生产者发送ack确认(可选0、1、all/-1)
spring.kafka.producer.acks=1
# 批量大小
spring.kafka.producer.batch-size=16384
# 提交延时
spring.kafka.producer.properties.linger.ms=0
# 当生产端积累的消息达到batch-size或接收到消息linger.ms后,生产者就会将消息提交给kafka
# linger.ms为0表示每接收到一条消息就提交给kafka,这时候batch-size其实就没用了
# 生产端缓冲区大小
spring.kafka.producer.buffer-memory = 33554432
# Kafka提供的序列化和反序列化类
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
# 自定义分区器
# spring.kafka.producer.properties.partitioner.class=com.felix.kafka.producer.CustomizePartitioner
###########【初始化消费者配置】###########
# 默认的消费组ID
spring.kafka.consumer.properties.group.id=defaultConsumerGroup
# 是否自动提交offset
spring.kafka.consumer.enable-auto-commit=true
# 提交offset延时(接收到消息后多久提交offset)
spring.kafka.consumer.auto.commit.interval.ms=1000
# 当kafka中没有初始offset或offset超出范围时将自动重置offset
# earliest:重置为分区中最小的offset;
# latest:重置为分区中最新的offset(消费分区中新产生的数据);
# none:只要有一个分区不存在已提交的offset,就抛出异常;
spring.kafka.consumer.auto-offset-reset=latest
# 消费会话超时时间(超过这个时间consumer没有发送心跳,就会触发rebalance操作)
spring.kafka.consumer.properties.session.timeout.ms=120000
# 消费请求超时时间
spring.kafka.consumer.properties.request.timeout.ms=180000
# Kafka提供的序列化和反序列化类
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
# 消费端监听的topic不存在时,项目启动会报错(关掉)
spring.kafka.listener.missing-topics-fatal=false
# 设置批量消费
# spring.kafka.listener.type=batch
# 批量消费每次最多消费多少条消息
# spring.kafka.consumer.max-poll-records=50
在消息提供者服务器上进行添加配置类:直接在代码中进行设置分区和副本数
@Configuration
public class KafkkaConfig {
// 创建一个名为testtopic的Topic并设置分区数为8,分区副本数为2
@Bean
public NewTopic initialTopic() {
return new NewTopic("testtopic",8, (short) 2 );
}
// 如果要修改分区数,只需修改配置值重启项目即可
// 修改分区数并不会导致数据的丢失,但是分区数只能增大不能减小
@Bean
public NewTopic updateTopic() {
return new NewTopic("testtopic",10, (short) 2 );
}
}
@RestController
public class kafka1 {
@Autowired
private KafkaTemplate kafkaTemplate;
// 发送消息
@GetMapping("/kafka")
public void sendMessage1() {
kafkaTemplate.send("testtopic", "xxxxxxxxxxxxxxxxxx");
}
}
消息提供者:带回调方法。
kafkaTemplate提供了一个回调方法addCallback,我们可以在回调方法中监控消息是否发送成功 或 失败时做补偿处理
@RestController
public class kafka1 {
@Autowired
private KafkaTemplate kafkaTemplate;
// 发送消息
@GetMapping("/kafka")
public void sendMessage1() {
kafkaTemplate.send("testtopic", "xxxxxxxxxxxxxxxxxx")
.addCallback(//addCallback回调方法中监控消息是否发送成功 或 失败时做补偿处理
new ListenableFutureCallback>() {
public void onFailure(Throwable throwable) {
System.out.println("发送消息失败:"+throwable.getMessage());
}
public void onSuccess(SendResult result) {
System.out.println("发送消息成功:" + result.getRecordMetadata().topic() + "-"
+ result.getRecordMetadata().partition() + "-" + result.getRecordMetadata().offset());
}
});
}
}
@Component
public class kafka2 {
// 消费监听
@KafkaListener(topics = {"testtopic"})
public void onMessage1(ConsumerRecord, ?> record){
// 消费的哪个topic、partition的消息,打印出消息内容
System.out.println("简单消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
}
}
当调用一次接口就会发送一次消息:
/**
* @Title 指定topic、partition、offset消费
* @Description 同时监听topic1和topic2,监听topic1的0号分区、topic2的 "0号和1号" 分区,指向1号分区的offset初始值为8
* @Author long.yuan
* @Date 2020/3/22 13:38
* @Param [record]
* @return void
**/
@KafkaListener(id = "sso-wy1",groupId = "test-consumer-group",topicPartitions = {
@TopicPartition(topic = "testtopic", partitions = { "4" }),
@TopicPartition(topic = "testtopic", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "8"))
})
public void onMessage2(ConsumerRecord, ?> record) {
System.out.println("topic:"+record.topic()+"|partition:"+record.partition()+"|offset:"+record.offset()+"|value:"+record.value());
}
属性解释:
① id:消费者ID;
② groupId:消费组ID;
③ topics:监听的topic,可监听多个;
④ topicPartitions:可配置更加详细的监听信息,可指定topic、parition、offset监听。
上面onMessage2监听的含义:监听topic1的0号分区,同时监听topic2的0号分区和topic2的1号分区里面offset从8开始的消息。
注意:topics和topicPartitions不能同时使用;
通过异常处理器,我们可以处理consumer在消费时发生的异常。
新建一个 ConsumerAwareListenerErrorHandler 类型的异常处理方法,用@Bean注入,BeanName默认就是方法名,然后我们将这个异常处理器的BeanName放到@KafkaListener注解的errorHandler属性里面,当监听抛出异常的时候,则会自动调用异常处理器
// 新建一个异常处理器,用@Bean注入
@Bean
public ConsumerAwareListenerErrorHandler consumerAwareErrorHandler() {
return (message, exception, consumer) -> {
System.out.println("消费异常:"+message.getPayload());
return null;
};
}
// 将这个异常处理器的BeanName放到@KafkaListener注解的errorHandler属性里面
@KafkaListener(topics = {"topic1"},errorHandler = "consumerAwareErrorHandler")
public void onMessage4(ConsumerRecord, ?> record) throws Exception {
throw new Exception("简单消费-模拟异常");
}
// 批量消费也一样,异常处理器的message.getPayload()也可以拿到各条消息的信息
@KafkaListener(topics = "topic1",errorHandler="consumerAwareErrorHandler")
public void onMessage5(List> records) throws Exception {
System.out.println("批量消费一次...");
throw new Exception("批量消费-模拟异常");
}
消息过滤器可以在消息抵达consumer之前被拦截,在实际应用中,我们可以根据自己的业务逻辑,筛选出需要的信息再交由KafkaListener处理,不需要的消息则过滤掉。
配置消息过滤只需要为 监听器工厂 配置一个RecordFilterStrategy(消息过滤策略),返回true的时候消息将会被抛弃,返回false时,消息能正常抵达监听容器
@Component
public class KafkaConsumer {
@Autowired
ConsumerFactory consumerFactory;
// 消息过滤器
@Bean
public ConcurrentKafkaListenerContainerFactory filterContainerFactory() {
ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory();
factory.setConsumerFactory(consumerFactory);
// 被过滤的消息将被丢弃
factory.setAckDiscarded(true);
// 消息过滤策略
factory.setRecordFilterStrategy(consumerRecord -> {
if (Integer.parseInt(consumerRecord.value().toString()) % 2 == 0) {
return false;
}
//返回true消息则被过滤
return true;
});
return factory;
}
// 消息过滤监听
@KafkaListener(topics = {"topic1"},containerFactory = "filterContainerFactory")
public void onMessage6(ConsumerRecord, ?> record) {
System.out.println(record.value());
}
}
前面我们在发送消息的时候使用了带回调的方法,可以判断消息是否发送成功,但是监听的时候只是接收消息,并不知道更详细的信息,如partition、offset等,可以使用ConsumerRecord参数作为监听方法的参数,代码如下:
@KafkaListener(topics = {"test5"})
public void consumer(ConsumerRecord,?> consumerRecord,Acknowledgment acknowledgment){
//判断是否为null
Optional> kafkaMessage = Optional.ofNullable(consumerRecord.value());
if(kafkaMessage.isPresent()){
//得到Optional实例中的值
Object message = kafkaMessage.get();
System.err.println("接收到的消息:"+message);
}
//TODO 上面为具体实现个人业务逻辑
// 最后 调用acknowledgment的ack方法,提交offset
acknowledgment.acknowledge();
}