edata-base是基于Spark的大数据二次开发库,它封装了Spark与其他常用中间的使用方法,使得基于Spark的开发更加简便。
源码仓库地址:https://gitee.com/alan-sword/edata-base
edata-base 规定了Spark API与其他中间件API的版本,自定义Spark工程可以自行引用,edata-base-component引用了这个父工程。
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>com.edata.bigdatagroupId>
<artifactId>edata-baseartifactId>
<packaging>pompackaging>
<version>1.0-SNAPSHOTversion>
<properties>
<java.version>1.8java.version>
<scala.version>2.11scala.version>
<scala.binary.version>2.11scala.binary.version>
<spark.version>2.4.3spark.version>
<hadoop.version>3.1.2hadoop.version>
<posgresql.version>42.1.1posgresql.version>
<nebula.version>2.6.1nebula.version>
<flink.version>1.14.3flink.version>
<zookeeper.version>3.6.1zookeeper.version>
properties>
<modules>
<module>edata-base-componentmodule>
<module>edata-bigdata-testmodule>
modules>
<dependencies>
<dependency>
<groupId>org.postgresqlgroupId>
<artifactId>postgresqlartifactId>
<version>42.3.1version>
dependency>
<dependency>
<groupId>org.mongodb.sparkgroupId>
<artifactId>mongo-spark-connector_${scala.version}artifactId>
<version>2.4.3version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-core_${scala.version}artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-streaming_${scala.version}artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-streaming-kafka-0-10_${scala.version}artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-sql_${scala.version}artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-hive_${scala.version}artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-mllib_${scala.version}artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.zookeepergroupId>
<artifactId>zookeeperartifactId>
<version>${zookeeper.version}version>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-compiler-pluginartifactId>
<configuration>
<source>${java.version}source>
<target>${java.version}target>
<encoding>UTF-8encoding>
<showWarnings>trueshowWarnings>
configuration>
plugin>
<plugin>
<groupId>org.scala-toolsgroupId>
<artifactId>maven-scala-pluginartifactId>
<version>2.15.2version>
<executions>
<execution>
<goals>
<goal>compilegoal>
<goal>testCompilegoal>
goals>
execution>
executions>
plugin>
plugins>
build>
project>
我们可以先大致看看在自定义工程edata-base-test中是如何使用edata-base-component的,首先是POM文件
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>edata-baseartifactId>
<groupId>com.edata.bigdatagroupId>
<version>1.0-SNAPSHOTversion>
parent>
<artifactId>edata-bigdata-testartifactId>
<modelVersion>4.0.0modelVersion>
<dependencies>
<dependency>
<groupId>com.edata.bigdatagroupId>
<artifactId>edata-base-componentartifactId>
<version>1.0-SNAPSHOTversion>
dependency>
dependencies>
project>
如上所示,edata-base-test引用了edata-base-component的包。便可以如下图般使用相关的库。
package com.edata.bigdata.viewmain
import com.edata.bigdata.bean.MyClass
import com.edata.bigdata.mongo.{SparkMongoConnector, SparkMongoImpl}
object testing {
def main(args: Array[String]): Unit = {
//创建连接器
val connector:SparkMongoConnector = new SparkMongoConnector()
connector.appname="SparkMongoTesting"
connector.master = "local[*]"
connector.ipport = "192.168.36.141:27017"
connector.database = "spark"
connector.collection = "collection"
connector.username = "admin"
connector.password = "123456"
//connector.uri = "mongodb://admin:[email protected]:27017/spark.collection?authSource=admin"
//创建Spark-mongo数据交互实例,赋予连接器
val smi = new SparkMongoImpl[MyClass]
smi.connector = connector
val data = smi.find()
data.first()
smi.save(data)
}
}
自定义工程在使用edata-base-component时,只需要实现两步
(1)创建Spark与其他中间件的连接器(connector)实例。
(2)创建Spark与其他中间的接口实例,创建过程中传入自定义case class(上面代码是MyClass),并将连接器实例赋给接口实例。
如下图所示
edata-base-component根据Spark与主流中间件在交互上的不同划分模块,例如hdfs,mongodb,postgresql等,此外还有一些工具类,以及针对自定义case class的反射转换。使得基于edata-base-component开发的Spark程序能够自动将用户定义的case class转换成DataFrame中的Schema。
将edata-base-component工程打包成Jar,并在自己的自定义工程里进行引用,POM文件如下
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>edata-baseartifactId>
<groupId>com.edata.bigdatagroupId>
<version>1.0-SNAPSHOTversion>
parent>
<artifactId>edata-bigdata-testartifactId>
<modelVersion>4.0.0modelVersion>
<dependencies>
<dependency>
<groupId>com.edata.bigdatagroupId>
<artifactId>edata-base-componentartifactId>
<version>1.0-SNAPSHOTversion>
dependency>
dependencies>
project>
总体上,可以将基于edata-base-component的代码分成两个部分,创建连接器,以及调用API。
val connector:KafkaComsumeConnector = new KafkaComsumeConnector()
connector.appname = "SparkKafkaComsumerTesting"
connector.master = "local[*]"
connector.bootstraps = "localhost:9092"
connector.topic = "topicA"
connector.group_id = "direct"
val ski = new SparkKafkaImpl[String,String]
ski.comsumeConnector = connector
ski.createDirectStream()
ski.stream.foreachRDD(rdd=>{
rdd.foreach(println)
val kvRDD = rdd.map(record=>(record.key,record.value))
kvRDD.foreach(println)
})
ski.start()