详细讲解视频可看B站up:唐国梁Tommy的视频轻松学 PyTorch 手写字体识别 MNIST
这是我目前为止看到的讲解最详细的视频,解答了我很疑惑。
下面放了两个版本的代码,第一个是上面up主讲解的代码,下面的那个是pytorch官方给出的mnist代码。
官方代码链接:github
#来自b站up唐国梁Tommy
# 1 加载必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import cv2
import numpy as np
# 2 定义超参数
BATCH_SIZE = 64 # 每批处理的数据
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 使用GPU或者CPU训练
EPOCHS = 10 #训练数据集的轮次
# 3 构建pipeline,对图像进行处理
pipeline = transforms.Compose([
transforms.ToTensor(), # 将图片转换成tensor
transforms.Normalize((0.1307,),(0.3081)) # 降低模型的复杂度
])
# 4 下载,加载数据
train_set = datasets.MNIST("data",train=True,download=True,transform=pipeline)
test_set = datasets.MNIST("data",train=False,download=True,transform=pipeline)
# 加载数据
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_set, batch_size=BATCH_SIZE, shuffle=True)
# 显示MNIST中的图片
# with open("./data/MNIST/raw/train-images-idx3-ubyte","rb") as f:
# # file = f.read()
# #
# # image1 = [int(str(item).encode('ascii'),10) for item in file[16 : 16+784]]
# # print(image1)
# #
# # image1_np = np.array(image1, dtype=np.uint8).reshape(28, 28, 1)
# # print(image1_np.shape)
# #
# # cv2.imwrite("digit.jpg", image1_np)
# 5 构建网络模型
class Netmodel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 10, 5) # 1: 灰度图片的通道,10:输出通道,5:kernel卷积核大小
self.conv2 = nn.Conv2d(10, 20, 3) # 10:输入通道,20:输出通道,3:kernel
self.fc1 = nn.Linear(20*10*10, 500) #20*10*10:输入通道,500:输出通道
self.fc2 = nn.Linear(500, 10) # 500:输入通道,10:输出通道
def forward(self,x):
input_size = x.size(0) # batch_size
x = self.conv1(x) # 输入:batch*1*28,输出:batch*10*24*24 (28-5+1=24) 卷积操作
x = F.relu(x) # 保持shape不变,输出:batch*10*24*24
x = F.max_pool2d(x, 2, 2) # 输入:batch*10*24*24 输出:batch*10*12*12
x = self.conv2(x) # 输入:batch*10*12*12 输出:batch*20*10*10
x = F.relu(x)
x = x.view(input_size,-1) # Flatten的作用 -1,自动计算维度, 20*10*10 = 2000
x = self.fc1(x) # 输入:batch*2000 输出:batch*500
x = F.relu(x) # 保持shape不变
x = self.fc2(x) # 输入:batch*500 输出:batch*10
output = F.log_softmax(x, dim=1) # 计算分类后,每个数字的概率值
return output
# 6 定义优化器
model = Netmodel().to(DEVICE)
optimizer = optim.Adam(model.parameters())
# 7 定义训练方法
def train_model(model, device, train_loader, optimizer, epoch):
# 模型训练
model.train()
for batch_index, (data, target) in enumerate(train_loader):
# 部署到DEVICE上去
data, target = data.to(device), target.to(device)
# 梯度初始化为0
optimizer.zero_grad()
# 训练后的结果
output = model(data)
# 计算损失
loss = F.cross_entropy(output, target)
# 反向传播
loss.backward()
# 参数优化
optimizer.step()
if batch_index % 3000 == 0:
print("Train Epoch : {}\t Loss : {:.6f}".format(epoch, loss.item()))
# 8 定义测试方法
def test_model(model, device, test_loader):
# 模型验证
model.eval()
# 正确率
correct = 0.0
# 测试损失
test_loss= 0.0
with torch.no_grad(): # 不会计算梯度,也不会进行反向传播
for data, target in test_loader:
# 部署到device
data, target = data.to(device), target.to(device)
# 测试数据
output = model(data)
# 计算测试损失
test_loss += F.cross_entropy(output, target).item()
# 找到概率值最大的下标
pred = output.max(1, keepdim=True)[1] # 值,索引
# pred = torch.max(output, dim=1)
# pred = output.argmax(dim=1)
# 累计正确的值
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print("Test —— Average loss : {:.4f}, Accuracy : {:.3f}\n".format(
test_loss, 100.0 * correct / len(test_loader.dataset)
))
# 9 调用方法
for epoch in range(1,EPOCHS +1):
train_model(model, DEVICE, train_loader, optimizer, epoch)
test_model(model, DEVICE,test_loader)
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()