彻底弄明白之数据结构中的KMP算法

如何加速朴素查找算法? KMP,当然还有其他算法,后续介绍.
   
 

Knuth–Morris–Pratt string search algorithm

Start at LHS of string, string[0], trying to match pattern, working right. 
Trying to match string[i] == pattern[j].
 
Given a search pattern, pre-build a table, next[j], showing, when there is a mismatch at pattern position j, where to reset j to

If match fails, keep i same, reset j to position next[j].

 

 

How to build the table

Everything else below is just how to build the table.
 

Construct a table showing where to reset j to

  1. If mismatch string[i] != pattern[0], just move string to i+1, j = 0
  2. If mismatch string[i] != pattern[1], we leave i the same, j = 0

    pattern = 1
    string = ... 1100000

     

  3. If mismatch string[i] != pattern[2], we leave i the same, and change j, but we need to consider repeats in pattern[0] .. pattern[1]

    pattern = 11
    string = ... 11100000 
    i stays same, j goes from 2 back to 1

    pattern = 10
    string = ... 10100000 
    i stays same, j goes from 2 back to 0

     

  4. If mismatch string[i] != pattern[j], we leave i the same, and change j, but we need to consider repeats in pattern[0] .. pattern[j-1]
Given a certain pattern, construct a table showing where to reset j to.

 

 

Construct a table of next[j]

For each j, figure out: 
next[j] = length of longest prefix in  "pattern[0] .. pattern[j-1]"  that matches the suffix of  "pattern[1] .. pattern[j]  
next[j] =  “最大匹配的子串的长度"  
That is:
  1. prefix must include pattern[0]
  2. suffix must include pattern[j]
  3. prefix and suffix are different
key
                                                        
Example for pattern  “ ABABAC" :
 

next[j] = length of longest prefix in "pattern[0] .. pattern[j-1]" that matches the suffix of "pattern[1] .. pattern[j] 

当j+1位与s[k]位比较,不匹配时

j'=next[j], j’和s[k]比较了,j’移到了原j+1的位置

j 0 1 2 3 4 5
substring 0 to j A AB ABA ABAB ABABA ABABAC
longest prefix-suffix match none none A AB ABA none
next[j] 0 0 1 2 3 0
notes no prefix and suffix that are different 
i.e. next[0]=0 for all patterns
         

 


Given j, let n = next[j] 
"pattern[0] .. pattern[n-1]" = "pattern[j-(n-1)] .. pattern[j]"

"pattern[0] .. pattern[next[j]-1]" = "pattern[j-(next[j]-1)] .. pattern[j]"

e.g. j = 4, n = 3, 

"pattern[0] .. pattern[2]" = "pattern[2] .. pattern[4]"

If match fails at position j+1(compare with s[j+1]), keep i same, reset pattern to position n(next[j]). 
Have already matched pattern[0] .. pattern[n-1],    pattern[0] .. pattern[n-1]=pattern[1] .. pattern[n]

e.g. We have matched ABABA so far. 
If next one fails, say we have matched ABA so far and then see if next one matches. 
That is, keep i same, just reset j to 3 (= precisely length of longest prefix-suffix match) 
Then, if match after ABA fails too, by the same rule we say we have matched A so far, reset to j = 1, and try again from there. 
In other words, it starts by trying to match the longest prefix-suffix, but if that fails it works down to the shorter ones until exhausted (no prefix-suffix matches left).

 

Algorithm to construct table of next[j]

Do this once, when the pattern comes in.
pattern[0] ... pattern[m-1] 
Here, i and j both index pattern.
就是说是两个模式串在比较
  NewImage

next[0] = 0

i = 1

j = 0

m = pattern.length



while ( i < m )

{
  // on 1 step i=1,j=0 

  if ( pattern[j] == pattern[i] )

  {

    next[i] = j+1 // it’s i not j

    i++

    j++

  }

  else ( pattern[j] != pattern[i] )

  {

    if ( j > 0 ){

            // 比如[0],[1],[2]  === [4],[5][6]

            //  这时 [3] <> [7]

     //maybe there is another pattern we can shift right though,就是前缀和后缀
 j = next[j-1] // 因为next[j]就是给j+1用的,这个可记为定律,并且用j-1的原因还有0到[j-1]才有前后缀匹配的概念,
 // j是没有和模式串中的前缀匹配的,画画图就知道了
     }

     else ( j == 0 )

     {
 // 模式串的下标为0时,与文本串s的下标i的值不匹配,i右移一位,模式串右移一位,0右移还是0
       next[i] = 0

       i++

       j = 0  // redundant, just to make it clear what we are looping with

     }

  }

}





 
 
 

 

 

你可能感兴趣的:(数据结构)