数仓4.0笔记——数仓建模

1 数仓分层

数仓4.0笔记——数仓建模_第1张图片

 

数仓命名规范

  • ODS层命名为ods_表名
  • DIM层命名为dim_表名
  • DWD层命名为dwd_表名
  • DWS层命名为dws_表名  
  • DWT层命名为dwt_表名
  • ADS层命名为ads_表名
  • 临时表命名为tmp_表名

脚本命名

  • 数据源_to_目标_db/log.sh
  • 用户行为脚本以log为后缀;业务数据脚本以db为后缀。

表字段类型

  • 数量类型为bigint
  • 金额类型为decimal(16, 2),表示:16位有效数字,其中小数部分2位
  • 字符串(名字,描述信息等)类型为string
  • 主键外键类型为string
  • 时间戳类型为bigint

2 数仓理论

关系建模与维度建模

关系建模将复杂的数据抽象为两个概念——实体和关系,并使用规范化的方式表示出来。

关系模型严格遵循第三范式(3NF),数据冗余程度低,数据的一致性容易得到保证。由于数据分布于众多的表中,查询会相对复杂,在大数据的场景下,查询效率相对较低。

维度模型以数据分析作为出发点,不遵循三范式,故数据存在一定的冗余。维度模型面向业务,将业务用事实表和维度表呈现出来。表结构简单,故查询简单,查询效率较高。

维度表和事实表

维度表:一般是对事实的描述信息。每一张维表对应现实世界中的一个对象或者概念。    例如:用户、商品、日期、地区等。

维表的特征:

  • 维表的范围很宽(具有多个属性、列比较多)
  • 跟事实表相比,行数相对较小:通常< 10万条
  • 内容相对固定:编码表

事实表中的每行数据代表一个业务事件(下单、支付、退款、评价等)。“事实”这个术语表示的是业务事件的度量值(可统计次数、个数、金额等)。

每一个事实表的行包括:具有可加性的数值型的度量值、与维表相连接的外键,通常具有两个和两个以上的外键。

事实表的特征:

  • 非常的大
  • 内容相对的窄:列数较少(主要是外键id和度量值)
  • 经常发生变化,每天会新增加很多。

1)事务型事实表

每个事务或事件为单位,例如一个销售订单记录,一笔支付记录等,作为事实表里的一行数据。一旦事务被提交,事实表数据被插入,数据就不再进行更改,其更新方式为增量更新。

2)周期型快照事实表

周期型快照事实表中不会保留所有数据只保留固定时间间隔的数据,例如每天或者每月的销售额,或每月的账户余额等。

例如购物车,有加减商品,随时都有可能变化,但是我们更关心每天结束时这里面有多少商品,方便我们后期统计分析。

3)累积型快照事实表

累计快照事实表用于跟踪业务事实的变化。例如,数据仓库中可能需要累积或者存储订单从下订单开始,到订单商品被打包、运输、和签收的各个业务阶段的时间点数据来跟踪订单声明周期的进展情况。当这个业务过程进行时,事实表的记录也要不断更新。

 维度模型分类:星型模型、雪花模型

注重性能,选星性;注重灵活性,选雪花。数仓中更倾向维度更少的星型模型。

3 数据仓库建模

维度建模一般按照以下四个步骤:

选择业务过程→声明粒度→确认维度→确认事实

数仓4.0笔记——数仓建模_第2张图片

 

你可能感兴趣的:(数据库,sql,mysql)