决策树(decision tree)——(2)生成算法

**注:本博客为李航《统计学习方法》读书笔记,虽然有一些自己的理解,但是其中仍然有大量文字摘自李老师和周老师的书籍内容。


        本章将介绍决策树学习的生成算法.首先介绍ID3的生成算法,然后再介绍C4.5中的生成算法.这些都是决策树学习的经典算法.

ID3算法

ID3算法的核心是在决策树各个结点上应用信息增益准则选择特征,递归地构建决策树.

具体方法是:

从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止.最后得到一个决策树.ID3相当于用极大似然法进行概率模型的选择。


算法(ID3算法)

这里直接举例说明比较清楚,因为用数学来解释对数学不好的人,不太友好

贷款申请样本数据表

决策树(decision tree)——(2)生成算法_第1张图片

例 对训练集训练,利用ID3算法建立决决策树。

        利用结果,由于特征A_{3}(有自己的房子)的信息增益值最大,所以选择特征A_{3}作为根结点的特征.它将训练数据集D划分为两个子集D_{1}A_{3}取值为“是”)和D_{2}A_{3}取值为“否”).由于D_{1}只有同一类的样本点,所以它成为一个叶结点,结点的类标记为“是”

D_{2},则需从特征A_{1}(年龄),A_{2}(有工作)和A_{3}(信贷情况)中选择新的特征.计算各个特征的信息增益:

选择信息增益最大的特征A_{2}(有工作)作为结点的特征.由于4有两个可能取值,从这一结点引出两个子结点:一个对应“是”(有工作)的子结点,包含3个样本,它们属于同一类,所以这是一个叶结点,类标记为“是”:另一个是对应“否”(无工作)的子结点,包含6个样本,它们也属于同一类,所以这也是一个叶结点,类标记为“否”.
这样生成一个如图所示的决策树.该决策树只用了两个特征(有两个内部结点)

 决策树(decision tree)——(2)生成算法_第2张图片

 ID3算法只有树的生成,所以该算法生成的树容易产生过拟合.

使用python实现ID3算法:

先对数据集进行属性标注:

  • 年龄:0代表青年,1代表中年,2代表老年;
  • 有工作:0代表否,1代表是;
  • 有自己的房子:0代表否,1代表是;
  • 信贷情况:0代表一般,1代表好,2代表非常好;
  • 类别(是否给贷款):no代表否,yes代表是。
from math import log
import operator

"""
函数说明:创建测试数据集
年龄:0代表青年,1代表中年,2代表老年;
有工作:0代表否,1代表是;
有自己的房子:0代表否,1代表是;
信贷情况:0代表一般,1代表好,2代表非常好;
类别(是否给贷款):no代表否,yes代表是。
"""


def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],  # 数据集
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']  # 分类属性
    return dataSet, labels  # 返回数据集和分类属性


"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
    dataSet - 数据集
Returns:
    shannonEnt - 经验熵(香农熵)
"""


def calcShannonEnt(dataSet):
    numEntires = len(dataSet)  # 返回数据集的行数
    labelCounts = {}  # 保存每个标签(Label)出现次数的字典
    for featVec in dataSet:  # 对每组特征向量进行统计
        currentLabel = featVec[-1]  # 提取标签(Label)信息
        if currentLabel not in labelCounts.keys():  # 如果标签(Label)没有放入统计次数的字典,添加进去
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1  # Label计数
    shannonEnt = 0.0  # 经验熵(香农熵)
    for key in labelCounts:  # 计算香农熵
        prob = float(labelCounts[key]) / numEntires  # 选择该标签(Label)的概率
        shannonEnt -= prob * log(prob, 2)  # 利用公式计算
    return shannonEnt  # 返回经验熵(香农熵)


"""
函数说明:按照给定特征划分数据集
Parameters:
    dataSet - 待划分的数据集
    axis - 划分数据集的特征
    value - 需要返回的特征的值
"""


def splitDataSet(dataSet, axis, value):
    retDataSet = []  # 创建返回的数据集列表
    for featVec in dataSet:  # 遍历数据集
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]  # 去掉axis特征
            reducedFeatVec.extend(featVec[axis + 1:])  # 将符合条件的添加到返回的数据集
            retDataSet.append(reducedFeatVec)
    return retDataSet  # 返回划分后的数据集


"""
函数说明:选择最优特征
Parameters:
    dataSet - 数据集
Returns:
    bestFeature - 信息增益最大的(最优)特征的索引值
"""


def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1  # 特征数量
    baseEntropy = calcShannonEnt(dataSet)  # 计算数据集的香农熵
    bestInfoGain = 0.0  # 信息增益
    bestFeature = -1  # 最优特征的索引值
    for i in range(numFeatures):  # 遍历所有特征
        # 获取dataSet的第i个所有特征
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)  # 创建set集合{},元素不可重复
        newEntropy = 0.0  # 经验条件熵
        for value in uniqueVals:  # 计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)  # subDataSet划分后的子集
            prob = len(subDataSet) / float(len(dataSet))  # 计算子集的概率
            newEntropy += prob * calcShannonEnt(subDataSet)  # 根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy  # 信息增益
        print("第%d个特征的增益为%.3f" % (i+1, infoGain))  # 打印每个特征的信息增益
        if (infoGain > bestInfoGain):  # 计算信息增益
            bestInfoGain = infoGain  # 更新信息增益,找到最大的信息增益
            bestFeature = i  # 记录信息增益最大的特征的索引值
    return bestFeature  # 返回信息增益最大的特征的索引值


"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
    classList - 类标签列表
Returns:
    sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""


def majorityCnt(classList):
    classCount = {}
    for vote in classList:  # 统计classList中每个元素出现的次数
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)  # 根据字典的值降序排序
    return sortedClassCount[0][0]  # 返回classList中出现次数最多的元素


"""
函数说明:递归构建决策树
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""


def createTree(dataSet, labels, featLabels):
    classList = [example[-1] for example in dataSet]  # 取分类标签(是否放贷:yes or no)
    if classList.count(classList[0]) == len(classList):  # 如果类别完全相同则停止继续划分
        return classList[0]
    if len(dataSet[0]) == 1:  # 遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)  # 选择最优特征
    bestFeatLabel = labels[bestFeat]  # 最优特征的标签
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel: {}}  # 根据最优特征的标签生成树
    del (labels[bestFeat])  # 删除已经使用特征标签
    featValues = [example[bestFeat] for example in dataSet]  # 得到训练集中所有最优特征的属性值
    uniqueVals = set(featValues)  # 去掉重复的属性值
    for value in uniqueVals:
        subLabels = labels[:]
        # 递归调用函数createTree(),遍历特征,创建决策树。
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels, featLabels)
    return myTree


"""
函数说明:使用决策树执行分类
Parameters:
    inputTree - 已经生成的决策树
    featLabels - 存储选择的最优特征标签
    testVec - 测试数据列表,顺序对应最优特征标签
Returns:
    classLabel - 分类结果
"""


def classify(inputTree, featLabels, testVec):
    firstStr = next(iter(inputTree))  # 获取决策树结点
    secondDict = inputTree[firstStr]  # 下一个字典
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                classLabel = secondDict[key]
    return classLabel



from keshihua import createPlot
if __name__ == '__main__':
    dataSet, labels = createDataSet()
    print(f'经验熵:{calcShannonEnt(dataSet)}')
    featLabels = []
    myTree = createTree(dataSet, labels, featLabels)
    print(myTree)
    testVec = [1,0]  # 测试数据,按生成决策树特征从上往下进行
    result = classify(myTree, featLabels, testVec)
    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')

    # 可视化
    #mytree = {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
    #createPlot(mytree)


代码说明:

  • 收集数据
    利用 createDataSet() 函数输入数据,这里数据比较少,所以就不单独写个文件存放数据了。
  • 分析数据
    计算数据集的香农熵的函数,按照给定特征划分数据集,选择最好的数据集划分方式
  • 训练算法
  • 分类
  • 测试

最终生成决策树:

决策树(decision tree)——(2)生成算法_第3张图片

可视化:

新建一个keshihua.py文件,导入上面.py中即可。

# =====================================Matplotlib实现决策树可视化===========================================
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt



# 定义文本框和箭头格式
decisionNode = dict(boxstyle='sawtooth', fc='0.8')
leafNode = dict(boxstyle='round4', fc='0.8')
arrow_args = dict(arrowstyle='<-')
# 设置中文字体
font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)

"""
函数说明:获取决策树叶子结点的数目
Parameters:
    myTree - 决策树
Returns:
    numLeafs - 决策树的叶子结点的数目
"""


def getNumLeafs(myTree):
    numLeafs = 0  # 初始化叶子
    # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,
    # 可以使用list(myTree.keys())[0]
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]  # 获取下一组字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':  # 测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


"""
函数说明:获取决策树的层数
Parameters:
    myTree - 决策树
Returns:
    maxDepth - 决策树的层数
"""


def getTreeDepth(myTree):
    maxDepth = 0  # 初始化决策树深度
    # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,
    # 可以使用list(myTree.keys())[0]
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]  # 获取下一个字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':  # 测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth  # 更新层数
    return maxDepth





"""

函数说明:绘制结点
Parameters:
    nodeTxt - 结点名
    centerPt - 文本位置
    parentPt - 标注的箭头位置
    nodeType - 结点格式
"""


def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")  # 定义箭头格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)  # 设置中文字体
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',  # 绘制结点
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, fontproperties=font)


"""
函数说明:标注有向边属性值
Parameters:
    cntrPt、parentPt - 用于计算标注位置
    txtString - 标注的内容
"""


def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]  # 计算标注位置
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


"""
函数说明:绘制决策树
Parameters:
    myTree - 决策树(字典)
    parentPt - 标注的内容
    nodeTxt - 结点名
"""


def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")  # 设置结点格式
    leafNode = dict(boxstyle="round4", fc="0.8")  # 设置叶结点格式
    numLeafs = getNumLeafs(myTree)  # 获取决策树叶结点数目,决定了树的宽度
    depth = getTreeDepth(myTree)  # 获取决策树层数
    firstStr = next(iter(myTree))  # 下个字典
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)  # 中心位置
    plotMidText(cntrPt, parentPt, nodeTxt)  # 标注有向边属性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)  # 绘制结点
    secondDict = myTree[firstStr]  # 下一个字典,也就是继续绘制子结点
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD  # y偏移
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':  # 测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            plotTree(secondDict[key], cntrPt, str(key))  # 不是叶结点,递归调用继续绘制
        else:  # 如果是叶结点,绘制叶结点,并标注有向边属性值
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


"""
函数说明:创建绘制面板
Parameters:
    inTree - 决策树(字典)
"""


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')  # 创建fig
    fig.clf()  # 清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)  # 去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))  # 获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))  # 获取决策树层数
    plotTree.xOff = -0.5 / plotTree.totalW;
    plotTree.yOff = 1.0;  # x偏移
    plotTree(inTree, (0.5, 1.0), '')  # 绘制决策树
    plt.show()

 决策树(decision tree)——(2)生成算法_第4张图片

 


 

你可能感兴趣的:(机器学习,决策树,算法,机器学习)