1 全值匹配
2 最佳左前缀法则
3 主键插入顺序
如果 这个数据页已经满了,我们需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着:性能损耗 !所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。
所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入
4 计算、函数、类型转换(自动或手动)导致索引失效
5 类型转换导致索引失效
6 范围条件右边的列索引失效
7 不等于(!= 或者<>)索引失效
8 is null可以使用索引,is not null无法使用索引
9 like以通配符%开头索引失效
10 OR 前后存在非索引的列,索引失效
11 数据库和表的字符集统一使用utf8mb4
统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的 字符集 进行比较前需要进行 转换 会造成索引失效。
EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a);
如果直接使用join语句,MySQL优化器可能会选择表t1或t2作为驱动表,这样会影响我们分析SQL语句的执行过程。为了便于分析执行过程中的性能问题,改用 straight_join 让MySQL使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去join。在这个语句里,t1 是驱动表,t2是被驱动表。
可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执行流程是这样的:
1. 从表t1中读入一行数据 R;
2. 从数据行R中,取出a字段到表t2里去查找;
3. 取出表t2中满足条件的行,跟R组成一行,作为结果集的一部分;
4. 重复执行步骤1到3,直到表t1的末尾循环结束。
这个过程是先遍历表t1,然后根据从表t1中取出的每行数据中的a值,去表t2中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称NLJ。
它对应的流程图如下所示:
在这个流程里:
1. 对驱动表t1做了全表扫描,这个过程需要扫描100行;
2. 而对于每一行R,根据a字段去表t2查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描100行;
3. 所以,整个执行流程,总扫描行数是200。
结论:
使用join语句,性能比强行拆成多个单表执行SQL语句的性能要好;
如果使用join语句的话,需要让小表做驱动表。保证被驱动表的JOIN字段已经创建了索引。
需要JOIN 的字段,数据类型保持绝对一致。
LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。
能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。
衍生表建不了索引
MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作 。
子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:
① 执行子查询时,MySQL需要为内层查询语句的查询结果 建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的CPU和IO资源,产生大量的慢查询。
② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会受到一定的影响。
③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询 不需要建立临时表 ,其 速度比子查询要快 ,如果查询中使用索引的话,性能就会更好。
结论:尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代
1. SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描 ,在 ORDER BY 子句 避免使用 FileSort 排序 。当然,某些情况下全表扫描,或者FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
2. 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;
如果不同就使用联合索引。
3. 无法使用 Index 时,需要对 FileSort 方式进行调优
双路排序 (慢)
MySQL 4.1之前是使用双路排序 ,字面意思就是两次扫描磁盘,最终得到数据, 读取行指针和
order by列 ,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取
对应的数据输出。
从磁盘取排序字段,在buffer进行排序,再从磁盘取其他字段取一批数据,要对磁盘进行两次扫描,由于IO是很耗时的,所以在mysql4.1之后,出现了第二种改进的算法,就是单路排序。
单路排序 (快)
从磁盘读取查询需要的 所有列 ,按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空间, 因为它把每一行都保存在内存中了。
结论及引申出的问题
由于单路是后出的,总体而言好过双路但是用单路有问题
优化策略
1. 尝试提高 sort_buffer_size
2. 尝试提高 max_length_for_sort_data
3. Order by 时select * 是一个大忌。最好只Query需要的字段。
group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
group by 先排序再分组,遵照索引建的最佳左前缀法则。
当无法使用索引列,增大 max_length_for_sort_data 和 sort_buffer_size 参数的设置。
where效率高于having,能写在where限定的条件就不要写在having中了。
减少使用order by,能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列 。
覆盖索引的利弊
好处:
1. 避免Innodb表进行索引的二次查询(回表)
2. 可以把随机IO变成顺序IO加快查询效率
弊端:
索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作
前缀索引对覆盖索引的影响
使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考
虑的一个因素。
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。ICP可以减少存储引擎访问基表的次数以及MySQL服务器访问存储引擎的次数。
storage层:只将满足index key条件的索引记录对应的整行记录取出,返回给server层
server 层:对返回的数据,使用后面的where条件过滤,直至返回最后一行。
storage层:
首先将index key条件满足的索引记录区间确定,然后在索引上使用index filter进行过滤。将满足的indexfilter条件的索引记录才去回表取出整行记录返回server层。不满足index filter条件的索引记录丢弃,不回表、也不会返回server层。
server 层:
对返回的数据,使用table filter条件做最后的过滤。
使用前后的成本差别
使用前,存储层多返回了需要被index filter过滤掉的整行记录
使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递到server层的成本。
ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例。
ICP的使用条件:
① 只能用于二级索引(secondary index)
②explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null 。
③ 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
④ ICP可以用于MyISAM和InnnoDB存储引擎
⑤ MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持。
⑥ 当SQL使用覆盖索引时,不支持ICP优化方法。
索引下推在非主键索引上的优化,可以有效减少回表的次数,大大提升了查询的效率,在平时工作中可以根据业务情况通过优化索引来达到使用索引下推,提高业务吞吐量。
从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。
这个表的建表语句是:
mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。
假设,执行查询的语句是
select id from test where k=5。
对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检
索。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微 。
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下change buffer。
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行changebuffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了 访问这个数据页 会触发merge外,系统有 后台线程会定期 merge。在 数据库正常关闭(shutdown) 的过程中,也会执行merge操作。
如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存 ,提高内存利用率。
唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。
1. 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是
对 更新性能 的影响。所以,建议你 尽量选择普通索引 。
2. 在实际使用中会发现, 普通索引 和 change buffer 的配合使用,对于 数据量大 的表的更新优化
还是很明显的。
3. 如果所有的更新后面,都马上 伴随着对这个记录的查询 ,那么你应该 关闭change buffer 。而在其他情况下,change buffer都能提升更新性能。
4. 由于唯一索引用不上change buffer的优化机制,因此如果业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?
首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。
然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引。
12.1 EXISTS 和 IN 的区分:
In:是把外表和内表做Hash 连接,而exists 是对外表作loop 循环,每次loop循环再对内表进行查询。
当查询两个表的大小相当时,用In 和 exists差别不大。
如果两个表中一个表较小,一个表较大,那么子查询表大的用exists,子查询表小的用In,效率会高的。
也就是说 IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况,这样效率会高的。
12.2 COUNT(*)与COUNT(具体字段)效率
count(*) 包括了所有的列,相当于行数,在统计结果的时候,不会忽略列值为NULL
count(1) 包括了忽略所有列,用1代表代码行,在统计结果的时候,不会忽略列值为NULL
count(字段) 只包括字段那一列,在统计结果的时候,会忽略列值为null的计数,即某个字段值为NULL时,不统计。
从效率层面说,# COUNT (※) ≈ COUNT(1) > COUNT(字段),又因为 COUNT (※) 是SQL92定义的标准统计数的语法,我们建议使用 COUNT(*)。
12.3 关于SELECT(*)
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查原因:
① MySQL 在解析的过程中,会通过 查询数据字典 将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用 覆盖索引
12.4 LIMIT 1 对优化的影响
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。
12.5 多使用COMMIT
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
回滚段上用于恢复数据的信息
被程序语句获得的锁
redo / undo log buffer 中的空间
管理上述 3 种资源中的内部花费