MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!

点击上方“计算机视觉工坊”,选择“星标”

干货第一时间送达

31b3d4a0a36069fabd2f9ceaa03d0399.png

作者丨Happy

来源丨AIWalker

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第1张图片

一句话总结

MobileOne(≈MobileNetV1+RepVGG+训练Trick)是由Apple公司提出的一种基于iPhone12优化的超轻量型架构,在ImageNet数据集上以<1ms的速度取得了75.9%的Top1精度

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第2张图片

出发点

高效率网络具有更强的实用价值,但学术界的研究往往聚焦于FLOPs或者参数量的降低,而这两者与推理效率之间并不存在严格的一致性。比如,FLOPs并未考虑访存消耗与计算并行度,像无参操作(如跳过连接导致的Add、Concat等)会带来显著的访存消耗,导致更长推理耗时。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第3张图片

为更好的分析高效率网络的瓶颈所在,作者以iPhone12平台为基准,从不同维度进行了"瓶颈"分析,见上图。从中可以看到:

  • 具有高参数量的模型也可以拥有低延迟,比如ShuffleNetV2;

  • 具有高FLOPs的模型也可以拥有低延迟,比如MobileNetV1和ShuffleNetV2;

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第4张图片

上表从SRCC角度进行了分析,可以看到:

  • 在移动端,延迟与FLOPs和参数量的相关性较弱;

  • 在PC-CPU端,该相关性进一步弱化。

具体方案

基于上述洞察,作者从先两个主要效率"瓶颈"维度上进行了对比,然后对性能"瓶颈"进行了分析并提出相应方案。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第5张图片
  • Activation Functions:上表对比了不同激活函数对于延迟的影响,可以看到:尽管具有相同的架构,但不同激活函数导致的延迟差异极大。本文默认选择ReLU激活函数。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第6张图片
  • Architectural Block:上表对影响延迟的两个主要因素(访存消耗与计算并行度)进行了分析,见上表,可以看到:当采用单分支结构时,模型具有更快的速度。此外,为改善效率,作者在大模型配置方面有限的实用了SE模块。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第7张图片

基于上述分析,MobileOne的核心模块基于MobileNetV1而设计,同时吸收了重参数思想,得到上图所示的结构。注:这里的重参数机制还存在一个超参k用于控制重参数分支的数量(实验表明:对于小模型来说,该变种收益更大)。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第8张图片

在Model Scaling方面类似MobileNetV2,上表给出了MobileOne不同配置的参数信息。

32f259651efc3ddf1c0a88ea5c92138b.png

在训练优化方面,小模型需要更少的正则,因此作者提出了Annealing的正则调整机制(可带来0.5%指标提升);此外,作者还引入渐进式学习机制(可带来0.4%指标提升);最后,作者还采用EMA机制,最终MobileOne-S2模型达到了77.4%的指标。

实验结果

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第9张图片

上表给出了ImageNet数据集上不同轻量型方案的性能与效率对比,可以看到:

  • 哪怕最轻量的Transformer也需要至少4ms,而MobileOne-S4仅需1.86ms即可达到79.4%的精度

  • 相比EfficientNet-B0,MobileOne-S3不仅具有指标高1%,同时具有更快的推理速度

  • 相比其他方案,在PC-CPU端,MobileOne仍具有非常明显的优势

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第10张图片

上表为MS-COCO检测、VOC分割以及ADE20K分割任务上的性能对比,很明显:

  • 在MC-COCO任务上,MobileOne-S4比MNASNet指标高27.8%,比MobileViT高6.1%;

  • 在VOC分割任务上,所提方案比MobileViT高1.3%,比MobileNetV2高5.8%;

  • 在ADE20K任务上,所提最佳方案比MobileNetV2高12%,而MobileOne-S1仍比MobileNetV2高2.9%。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第11张图片

在文章最后,作者俏皮的提了一句:"Although, our models are state-of-the art within the regime of efficient architectures, the accuracy lags large models ConvNeXt and Swin Transformer"。笔者想说的是:看上图。

本文仅做学术分享,如有侵权,请联系删文。

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

计算机视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第12张图片

▲长按加微信群或投稿

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第13张图片

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

MobileOne: 移动端仅需1ms的高性能骨干,你值得拥有!_第14张图片

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

你可能感兴趣的:(算法,大数据,机器学习,人工智能,java)