手把手带你学习Python数据可视化

目录

1 saborm 安装教程

2 数据准备

 3 设置边框

4 边框控制

5 画散点图

 6 折线图

 7 使用 lineplot()方法

 8. 绘制直方图 displot()

 9. 绘制条形图 barplot()

 10. 绘制线性回归模型

 11. 绘制 核密度图 kdeplot()

 12. 绘制 箱线图 boxplot()

 13. 绘制 提琴图 violinplot()

 13. 绘制 热力图 heatmap()

 分享自己的一些使用新的希望对大家有用会喜欢!谢谢关注

1 saborm 安装教程

pip install seaborn

如果比较慢可以使用 一下模板安装 速度很快 

pip install tensorflow==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
**加粗样式**
pip install --user jupyterlab -i https://pypi.tuna.tsinghua.edu.cn/simple

导入库

import seaborn as sns

2 数据准备

准备一组测试数据:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
pd.set_option('display.unicode.east_asian_width', True)

df1 = pd.DataFrame(
    {'数据序号': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
     '厂商编号': ['001', '001', '001', '002', '002', '002', '003', '003', '003', '004', '004', '004'],
     '产品类型': ['AAA', 'BBB', 'CCC', 'AAA', 'BBB', 'CCC', 'AAA', 'BBB', 'CCC', 'AAA', 'BBB', 'CCC'],
     'A属性值': [40, 70, 60, 75, 90, 82, 73, 99, 125, 105, 137, 100],
     'B属性值': [24, 36, 52, 32, 49, 68, 77, 90, 74, 88, 98, 99],
     'C属性值': [30, 36, 55, 46, 68, 77, 72, 89, 99, 90, 115, 101]
    }
)
print(df1)

运行结果如图是使用的pycharm

手把手带你学习Python数据可视化_第1张图片

 3 设置边框

sns.set_style()

边框可以选择的属性有:

  • whitegrid  白色网格
  • dark  灰色背景
  • white  白色背景
  • ticks  四周带刻度线的白色背景
sns.set()
 
sns.set_style(“darkgrid”)
 
sns.set_style(“whitegrid”)
 
sns.set_style(“dark”)
 
sns.set_style(“white”)
 
sns.set_style(“ticks”)

备注:其中sns.set()表示使用自定义样式,如果没有传入参数,则默认表示灰色网格背景风格。如果没有set()也没有set_style(),则为白色背景。

使用relplot()方法绘制出的图像,"ticks"样式无效。

关于设置其他风格相关的属性,如字体,这里有一个细节需要注意的是,这些代码必须写在sns.set_style()的后方才有效。如将字体设置为黑体(避免中文乱码)的代码:

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

如果在其后方设置风格,则设置好的字体会设置的风格覆盖,从而产生警告。其他属性也同理。

4 边框控制

sns.despine()方法
# 移除顶部和右部边框,只保留左边框和下边框
sns.despine()

# 使两个坐标轴相隔一段距离(以10长度为例)
sns.despine(offet=10,trim=True)

# 移除左边框
sns.despine(left=True)

# 移除指定边框 (以只保留底部边框为例)
sns.despine(fig=None, ax=None, top=True, right=True, left=True, bottom=False, offset=None, trim=False)

5 画散点图

使用seaborn库 绘制散点图,可以使用replot()方法,也可以使用scatter()方法。

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
sns.relplot(x=‘数据序号’, y=‘A属性值’, data=df1, color=‘red’)
plt.show()

手把手带你学习Python数据可视化_第2张图片

 ②对A属性值和数据序号绘制散点图,散点根据产品类型的不同显示不同的颜色,
白色网格,左、下边框:

sns.set_style(‘whitegrid’)
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
sns.relplot(x=‘数据序号’, y=‘A属性值’, hue=‘产品类型’, data=df1)
plt.show()

 手把手带你学习Python数据可视化_第3张图片

 ③将A属性、B属性、C属性三个字段的值用不同的样式绘制在同一张图上(绘制散点图),x轴数据是[0,2,4,6,8…]
ticks风格(四个方向的框线都要),字体使用楷体

sns.set_style(‘ticks’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
df2 = df1.copy()
df2.index = list(range(0, len(df2)*2, 2))
dfs = [df2[‘A属性值’], df2[‘B属性值’], df2[‘C属性值’]]
sns.scatterplot(data=dfs)
plt.show()

手把手带你学习Python数据可视化_第4张图片

 6 折线图

使用seaborn库绘制折线图, 可以使用replot()方法,也可以使用lineplot()方法。

sns.replot()默认绘制的是散点图,绘制折线图只需把参数kind改为"line"。

sns.set(rc={‘font.sans-serif’: “STKAITI”})
sns.relplot(x=‘数据序号’, y=‘A属性值’, data=df1, color=‘purple’, kind=‘line’)
plt.title(“绘制折线图”, fontsize=18)
plt.xlabel(‘num’, fontsize=18)
plt.ylabel(‘A属性值’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第5张图片

 需求:绘制不同产品类型的A属性折线(三条线一张图),whitegrid风格,字体楷体。

sns.set_style(“whitegrid”)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.relplot(x=‘数据序号’, y=‘A属性值’, hue=‘产品类型’, data=df1, kind=‘line’)
plt.title(“绘制折线图”, fontsize=18)
plt.xlabel(‘num’, fontsize=18)
plt.ylabel(‘A属性值’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第6张图片

 需求:将A属性、B属性、C属性三个字段的值用不同的样式绘制在同一张图上(绘制折线图),x轴数据是[0,2,4,6,8…]
  darkgrid风格(四个方向的框线都要),字体使用楷体,并加入x轴标签,y轴标签和标题。边缘距离合适。

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
df2 = df1.copy()
df2.index = list(range(0, len(df2)*2, 2))
dfs = [df2[‘A属性值’], df2[‘B属性值’], df2[‘C属性值’]]
sns.relplot(data=dfs, kind=“line”)
plt.title(“绘制折线图”, fontsize=18)
plt.xlabel(‘num’, fontsize=18)
plt.ylabel(‘A属性值’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第7张图片

多重子图 横向多重子图 col

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.relplot(data=df1, x=“A属性值”, y=“B属性值”, kind=“line”, col=“厂商编号”)
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.1, top=0.9)
plt.show()

纵向多重子图 row

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.relplot(data=df1, x=“A属性值”, y=“B属性值”, kind=“line”, row=“厂商编号”)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.95)
plt.show()

手把手带你学习Python数据可视化_第8张图片

 7 使用 lineplot()方法

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.lineplot(x=‘数据序号’, y=‘A属性值’, data=df1, color=‘purple’)
plt.title(“绘制折线图”, fontsize=18)
plt.xlabel(‘num’, fontsize=18)
plt.ylabel(‘A属性值’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()
sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
df2 = df1.copy()
df2.index = list(range(0, len(df2)*2, 2))
dfs = [df2[‘A属性值’], df2[‘B属性值’], df2[‘C属性值’]]
sns.lineplot(data=dfs)
plt.title(“绘制折线图”, fontsize=18)
plt.xlabel(‘num’, fontsize=18)
plt.ylabel(‘A属性值’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第9张图片

 8. 绘制直方图 displot()

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.displot(data=df1[[‘C属性值’]], bins=6, rug=True, kde=True)
plt.title(“直方图”, fontsize=18)
plt.xlabel(‘C属性值’, fontsize=18)
plt.ylabel(‘数量’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第10张图片

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
np.random.seed(13)
Y = np.random.randn(300)
sns.displot(Y, bins=9, rug=True, kde=True)
plt.title(“直方图”, fontsize=18)
plt.xlabel(‘C属性值’, fontsize=18)
plt.ylabel(‘数量’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第11张图片

 9. 绘制条形图 barplot()

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.barplot(x=“产品类型”, y=‘A属性值’, hue=“厂商编号”, data=df1)
plt.title(“条形图”, fontsize=18)
plt.xlabel(‘产品类型’, fontsize=18)
plt.ylabel(‘数量’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.15, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第12张图片

 10. 绘制线性回归模型

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.lmplot(x=“A属性值”, y=‘B属性值’, data=df1)
plt.title(“线性回归模型”, fontsize=18)
plt.xlabel(‘A属性值’, fontsize=18)
plt.ylabel(‘B属性值’, fontsize=16)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.15, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第13张图片

 11. 绘制 核密度图 kdeplot()

sns.set_style(‘darkgrid’)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.kdeplot(df1[“A属性值”], shade=True, data=df1, color=‘r’)
sns.kdeplot(df1[“B属性值”], shade=True, data=df1, color=‘g’)
plt.title(“核密度图”, fontsize=18)
plt.xlabel(‘Value’, fontsize=18)
plt.subplots_adjust(left=0.15, right=0.9, bottom=0.15, top=0.9)
plt.show()

手把手带你学习Python数据可视化_第14张图片

 12. 绘制 箱线图 boxplot()

np.random.seed(13)
Y = np.random.randint(20, 150, 360)
df2 = pd.DataFrame(
{‘厂商编号’: [‘001’, ‘001’, ‘001’, ‘002’, ‘002’, ‘002’, ‘003’, ‘003’, ‘003’, ‘004’, ‘004’, ‘004’] * 30,
‘产品类型’: [‘AAA’, ‘BBB’, ‘CCC’, ‘AAA’, ‘BBB’, ‘CCC’, ‘AAA’, ‘BBB’, ‘CCC’, ‘AAA’, ‘BBB’, ‘CCC’] * 30,
‘XXX属性值’: Y
}
)
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.boxplot(x=‘产品类型’, y=‘XXX属性值’, data=df2)
plt.show()

手把手带你学习Python数据可视化_第15张图片

 将厂商编号作为分类字段:

plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.boxplot(x=‘产品类型’, y=‘XXX属性值’, data=df2, hue=“厂商编号”)
plt.show()

手把手带你学习Python数据可视化_第16张图片

 13. 绘制 提琴图 violinplot()

plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.violinplot(x=‘产品类型’, y=‘XXX属性值’, data=df2)
plt.show()

手把手带你学习Python数据可视化_第17张图片

plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
sns.violinplot(x=‘XXX属性值’, y=‘产品类型’, data=df2)
plt.show()

手把手带你学习Python数据可视化_第18张图片

 13. 绘制 热力图 heatmap()

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
 
sns.set()
plt.figure(figsize=(6,6))
plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
 
s1 = np.random.randint(0, 200, 33)
s2 = np.random.randint(0, 200, 33)
s3 = np.random.randint(0, 200, 33)
s4 = np.random.randint(0, 200, 33)
s5 = np.random.randint(0, 200, 33)
s6 = np.random.randint(0, 200, 33)
s7 = np.random.randint(0, 200, 33)
data = pd.DataFrame(
{‘一’: s1,
‘二’: s2,
‘三’: s3,
‘四’:s4,
‘五’:s5,
‘六’:s6,
‘七’:s7
}
)
 
plt.title(‘双色球热力图’)
sns.heatmap(data, annot=True, fmt=‘d’, lw=0.5)
plt.xlabel(‘中奖号码位数’)
plt.ylabel(‘双色球数字’)
x = [‘第1位’, ‘第2位’, ‘第3位’, ‘第4位’, ‘第5位’, ‘第6位’, ‘第7位’]
plt.xticks(range(0, 7, 1), x, ha=‘left’)
plt.show()

手把手带你学习Python数据可视化_第19张图片

 分享自己的一些使用新的希望对大家有用会喜欢!谢谢关注

你可能感兴趣的:(手把手带你学python,python之数据分析可视化,python基础入门,python)