Flink Yarn Per Job - 提交流程一

图片

AbstractJobClusterExecutor.java

@Override
public CompletableFuture execute(@Nonnull final Pipeline pipeline, @Nonnull final Configuration configuration, @Nonnull final ClassLoader userCodeClassloader) throws Exception {
  /*TODO 将 流图(StreamGraph) 转换成 作业图(JobGraph)*/
  final JobGraph jobGraph = PipelineExecutorUtils.getJobGraph(pipeline, configuration);

  /*TODO 集群描述器:创建、启动了 YarnClient, 包含了一些yarn、flink的配置和环境信息*/
  try (final ClusterDescriptor clusterDescriptor = clusterClientFactory.createClusterDescriptor(configuration)) {
    final ExecutionConfigAccessor configAccessor = ExecutionConfigAccessor.fromConfiguration(configuration);

    /*TODO 集群特有资源配置:JobManager内存、TaskManager内存、每个Tm的slot数*/
    final ClusterSpecification clusterSpecification = clusterClientFactory.getClusterSpecification(configuration);

    final ClusterClientProvider clusterClientProvider = clusterDescriptor
        .deployJobCluster(clusterSpecification, jobGraph, configAccessor.getDetachedMode());
    LOG.info("Job has been submitted with JobID " + jobGraph.getJobID());

    return CompletableFuture.completedFuture(
        new ClusterClientJobClientAdapter<>(clusterClientProvider, jobGraph.getJobID(), userCodeClassloader));
  }

将StreamGraph转换为JobGraph

**(1)找到createJobGraph方法
**

1)PipelineExecutorUtils

  public static JobGraph getJobGraph(@Nonnull final Pipeline pipeline, @Nonnull final Configuration configuration) throws MalformedURLException {
    checkNotNull(pipeline);
    checkNotNull(configuration);

    final ExecutionConfigAccessor executionConfigAccessor = ExecutionConfigAccessor.fromConfiguration(configuration);
    // 往下看
    final JobGraph jobGraph = FlinkPipelineTranslationUtil
        .getJobGraph(pipeline, configuration, executionConfigAccessor.getParallelism());

    configuration
        .getOptional(PipelineOptionsInternal.PIPELINE_FIXED_JOB_ID)
        .ifPresent(strJobID -> jobGraph.setJobID(JobID.fromHexString(strJobID)));

    jobGraph.addJars(executionConfigAccessor.getJars());
    jobGraph.setClasspaths(executionConfigAccessor.getClasspaths());
    jobGraph.setSavepointRestoreSettings(executionConfigAccessor.getSavepointRestoreSettings());

    return jobGraph;
  }

2)FlinkPipelineTranslationUtil

  public static JobGraph getJobGraph(
      Pipeline pipeline,
      Configuration optimizerConfiguration,
      int defaultParallelism) {

    FlinkPipelineTranslator pipelineTranslator = getPipelineTranslator(pipeline);
    // 往下看
    return pipelineTranslator.translateToJobGraph(pipeline,
        optimizerConfiguration,
        defaultParallelism);
  }
3)StreamGraphTranslator implements FlinkPipelineTranslator

@Override
public JobGraph translateToJobGraph(
Pipeline pipeline,
Configuration optimizerConfiguration,
int defaultParallelism) {

StreamGraph streamGraph = (StreamGraph) pipeline;

// 重点
return streamGraph.getJobGraph(null);
}


  

4)StreamGraph

  

public JobGraph getJobGraph(@Nullable JobID jobID) {
return StreamingJobGraphGenerator.createJobGraph(this, jobID);
}


  

5)StreamingJobGraphGenerator

  

public static JobGraph createJobGraph(StreamGraph streamGraph, @Nullable JobID jobID) {
return new StreamingJobGraphGenerator(streamGraph, jobID).createJobGraph();
}


  

private JobGraph createJobGraph() {
preValidate();

// make sure that all vertices start immediately
/*TODO streaming 模式下,调度模式是所有节点(vertices)一起启动:Eager */
jobGraph.setScheduleMode(streamGraph.getScheduleMode());
jobGraph.enableApproximateLocalRecovery(streamGraph.getCheckpointConfig().isApproximateLocalRecoveryEnabled());

// Generate deterministic hashes for the nodes in order to identify them across
// submission iff they didn’t change.
// 广度优先遍历 StreamGraph 并且为每个SteamNode生成hash id,
// 保证如果提交的拓扑没有改变,则每次生成的hash都是一样的
Map hashes = defaultStreamGraphHasher.traverseStreamGraphAndGenerateHashes(streamGraph);

// Generate legacy version hashes for backwards compatibility
List> legacyHashes = new ArrayList<>(legacyStreamGraphHashers.size());
for (StreamGraphHasher hasher : legacyStreamGraphHashers) {
legacyHashes.add(hasher.traverseStreamGraphAndGenerateHashes(streamGraph));
}

/* TODO 最重要的函数,生成 JobVertex,JobEdge等,并尽可能地将多个节点chain在一起*/
setChaining(hashes, legacyHashes);

/TODO 将每个JobVertex的入边集合也序列化到该JobVertex的StreamConfig中 (出边集合已经在setChaining的时候写入了)/
setPhysicalEdges();

/TODO 根据group name,为每个 JobVertex 指定所属的 SlotSharingGroup 以及针对 Iteration的头尾设置 CoLocationGroup/
setSlotSharingAndCoLocation();

setManagedMemoryFraction(
Collections.unmodifiableMap(jobVertices),
Collections.unmodifiableMap(vertexConfigs),
Collections.unmodifiableMap(chainedConfigs),
id -> streamGraph.getStreamNode(id).getManagedMemoryOperatorScopeUseCaseWeights(),
id -> streamGraph.getStreamNode(id).getManagedMemorySlotScopeUseCases());

configureCheckpointing();

jobGraph.setSavepointRestoreSettings(streamGraph.getSavepointRestoreSettings());

JobGraphUtils.addUserArtifactEntries(streamGraph.getUserArtifacts(), jobGraph);

// set the ExecutionConfig last when it has been finalized
try {
/TODO 将 StreamGraph 的 ExecutionConfig 序列化到 JobGraph 的配置中/
jobGraph.setExecutionConfig(streamGraph.getExecutionConfig());
}
catch (IOException e) {
throw new IllegalConfigurationException(“Could not serialize the ExecutionConfig.” +
“This indicates that non-serializable types (like custom serializers) were registered”);
}

return jobGraph;
}


  

**(1)生成 JobVertex,JobEdge,并尽可能地将多个节点chain在一起**

  

1)StreamingJobGraphGenerator

  

operators start at position 1 because 0 is for chained source inputs

chain的开始位置是1,因为0是source input  

/**

  • Sets up task chains from the source {@link StreamNode} instances.
  • This will recursively create all {@link JobVertex} instances.

*/
private void setChaining(Map hashes, List> legacyHashes) {
// we separate out the sources that run as inputs to another operator (chained inputs)
// from the sources that needs to run as the main (head) operator.
final Map chainEntryPoints = buildChainedInputsAndGetHeadInputs(hashes, legacyHashes);
final Collection initialEntryPoints = new ArrayList<>(chainEntryPoints.values());

// iterate over a copy of the values, because this map gets concurrently modified
  // 从source开始建⽴ node chains
for (OperatorChainInfo info : initialEntryPoints) {
    // 构建node chains,返回当前节点的物理出边;startNodeId != currentNodeId 时,说明currentNode是chain中的子节点
createChain(
info.getStartNodeId(),
1, // operators start at position 1 because 0 is for chained source inputs
info,
chainEntryPoints);
}
}


  

private List createChain(
final Integer currentNodeId,
final int chainIndex,
final OperatorChainInfo chainInfo,
final Map chainEntryPoints) {

Integer startNodeId = chainInfo.getStartNodeId();
if (!builtVertices.contains(startNodeId)) {
/TODO 过渡用的出边集合, 用来生成最终的 JobEdge, 注意不包括 chain 内部的边/
List transitiveOutEdges = new ArrayList();

List chainableOutputs = new ArrayList();
List nonChainableOutputs = new ArrayList();

StreamNode currentNode = streamGraph.getStreamNode(currentNodeId);

/*TODO 将当前节点的出边分成 chainable 和 nonChainable 两类*/
for (StreamEdge outEdge : currentNode.getOutEdges()) {
  if (isChainable(outEdge, streamGraph)) {
    chainableOutputs.add(outEdge);
  } else {
    nonChainableOutputs.add(outEdge);
  }
}

for (StreamEdge chainable : chainableOutputs) {
  transitiveOutEdges.addAll(
      createChain(chainable.getTargetId(), chainIndex + 1, chainInfo, chainEntryPoints));
}

/*TODO 递归调用 createChain*/
for (StreamEdge nonChainable : nonChainableOutputs) {
  transitiveOutEdges.add(nonChainable);
  createChain(
      nonChainable.getTargetId(),
      1, // operators start at position 1 because 0 is for chained source inputs
      chainEntryPoints.computeIfAbsent(
        nonChainable.getTargetId(),
        (k) -> chainInfo.newChain(nonChainable.getTargetId())),
      chainEntryPoints);
}

/*TODO 生成当前节点的显示名,如:"Keyed Aggregation -> Sink: Unnamed"*/
chainedNames.put(currentNodeId, createChainedName(currentNodeId, chainableOutputs, Optional.ofNullable(chainEntryPoints.get(currentNodeId))));
chainedMinResources.put(currentNodeId, createChainedMinResources(currentNodeId, chainableOutputs));
chainedPreferredResources.put(currentNodeId, createChainedPreferredResources(currentNodeId, chainableOutputs));

OperatorID currentOperatorId = chainInfo.addNodeToChain(currentNodeId, chainedNames.get(currentNodeId));

if (currentNode.getInputFormat() != null) {
  getOrCreateFormatContainer(startNodeId).addInputFormat(currentOperatorId, currentNode.getInputFormat());
}

if (currentNode.getOutputFormat() != null) {
  getOrCreateFormatContainer(startNodeId).addOutputFormat(currentOperatorId, currentNode.getOutputFormat());
}

/*TODO 如果当前节点是起始节点, 则直接创建 JobVertex 并返回 StreamConfig, 否则先创建一个空的 StreamConfig */
StreamConfig config = currentNodeId.equals(startNodeId)
    ? createJobVertex(startNodeId, chainInfo)
    : new StreamConfig(new Configuration());

/*TODO 设置 JobVertex 的 StreamConfig, 基本上是序列化 StreamNode 中的配置到 StreamConfig中.*/
setVertexConfig(currentNodeId, config, chainableOutputs, nonChainableOutputs, chainInfo.getChainedSources());

if (currentNodeId.equals(startNodeId)) {
  /*TODO 如果是chain的起始节点,标记成chain start(不是chain中的节点,也会被标记成 chain start)*/
  config.setChainStart();
  config.setChainIndex(chainIndex);
  config.setOperatorName(streamGraph.getStreamNode(currentNodeId).getOperatorName());

  /*TODO 将当前节点(headOfChain)与所有出边相连*/
  for (StreamEdge edge : transitiveOutEdges) {
    /*TODO 通过StreamEdge构建出JobEdge,创建 IntermediateDataSet,用来将JobVertex和JobEdge相连*/
    connect(startNodeId, edge);
  }

  /*TODO 把物理出边写入配置, 部署时会用到*/
  config.setOutEdgesInOrder(transitiveOutEdges);
  /*TODO 将chain中所有子节点的StreamConfig写入到 headOfChain 节点的 CHAINED_TASK_CONFIG 配置中*/
  config.setTransitiveChainedTaskConfigs(chainedConfigs.get(startNodeId));

} else {
  /*TODO 如果是 chain 中的子节点*/
  chainedConfigs.computeIfAbsent(startNodeId, k -> new HashMap());

  config.setChainIndex(chainIndex);
  StreamNode node = streamGraph.getStreamNode(currentNodeId);
  config.setOperatorName(node.getOperatorName());
  /*TODO 将当前节点的StreamConfig添加到该chain的config集合中*/
  chainedConfigs.get(startNodeId).put(currentNodeId, config);
}

config.setOperatorID(currentOperatorId);

if (chainableOutputs.isEmpty()) {
  config.setChainEnd();
}
/*TODO 返回连往chain外部的出边集合*/
return transitiveOutEdges;

} else {
return new ArrayList<>();
}
}


  

  

  

创建启动YarnClient  

  

  

  

1)StandaloneClientFactory implements ClusterClientFactory


  

创建、启动了 YarnClient, 包含了一些yarn、flink的配置和环境信息

  

public StandaloneClusterDescriptor createClusterDescriptor(Configuration configuration) {
checkNotNull(configuration);
return new StandaloneClusterDescriptor(configuration);
}


  

2)YarnClusterClientFactory

  

private YarnClusterDescriptor getClusterDescriptor(Configuration configuration) {
/TODO 创建了YarnClient/
final YarnClient yarnClient = YarnClient.createYarnClient();
final YarnConfiguration yarnConfiguration = new YarnConfiguration();

/TODO 初始化、启动 YarnClient/
yarnClient.init(yarnConfiguration);
yarnClient.start();

return new YarnClusterDescriptor(
configuration,
yarnConfiguration,
yarnClient,
YarnClientYarnClusterInformationRetriever.create(yarnClient),
false);
}


  

  

  

集群资源配置

  

  

  

**(1) 配置内存**  

  

JobManager内存 = jobmanager.memory.process.size

TaskManager内存 = taskmanager.memory.process.size

每个Tm的slot数 = taskmanager.numberOfTaskSlots

  

public ClusterSpecification getClusterSpecification(Configuration configuration) {
checkNotNull(configuration);
 // jm 的内存 jobmanager.memory.process.size
final int jobManagerMemoryMB = JobManagerProcessUtils.processSpecFromConfigWithNewOptionToInterpretLegacyHeap(
configuration,
JobManagerOptions.TOTAL_PROCESS_MEMORY)
.getTotalProcessMemorySize()
.getMebiBytes();
// tm 的内存 taskmanager.memory.process.size
final int taskManagerMemoryMB = TaskExecutorProcessUtils
.processSpecFromConfig(TaskExecutorProcessUtils.getConfigurationMapLegacyTaskManagerHeapSizeToConfigOption(
configuration, TaskManagerOptions.TOTAL_PROCESS_MEMORY))
.getTotalProcessMemorySize()
.getMebiBytes();
// slot的个数 taskmanager.numberOfTaskSlots
int slotsPerTaskManager = configuration.getInteger(TaskManagerOptions.NUM_TASK_SLOTS);

return new ClusterSpecification.ClusterSpecificationBuilder()
.setMasterMemoryMB(jobManagerMemoryMB)
.setTaskManagerMemoryMB(taskManagerMemoryMB)
.setSlotsPerTaskManager(slotsPerTaskManager)
.createClusterSpecification();
}


  

  

  

集群部署

  

  

  

YarnClusterDescriptor

  

public ClusterClientProvider deployJobCluster(
ClusterSpecification clusterSpecification,
JobGraph jobGraph,
boolean detached) throws ClusterDeploymentException {
try {
// 1)
return deployInternal(
clusterSpecification,
“Flink per-job cluster”,
      // 2)
getYarnJobClusterEntrypoint(),
jobGraph,
detached);
} catch (Exception e) {
throw new ClusterDeploymentException(“Could not deploy Yarn job cluster.”, e);
}
}


  

**(1) deployInternal方法**  

  

/**

  • This method will block until the ApplicationMaster/JobManager have been deployed on YARN.
  • @param clusterSpecification Initial cluster specification for the Flink cluster to be deployed
  • @param applicationName name of the Yarn application to start
  • @param yarnClusterEntrypoint Class name of the Yarn cluster entry point.
  • @param jobGraph A job graph which is deployed with the Flink cluster, {@code null} if none
  • @param detached True if the cluster should be started in detached mode
    */
    private ClusterClientProvider deployInternal(
    ClusterSpecification clusterSpecification,
    String applicationName,
    String yarnClusterEntrypoint,
    @Nullable JobGraph jobGraph,
    boolean detached) throws Exception {

final UserGroupInformation currentUser = UserGroupInformation.getCurrentUser();
if (HadoopUtils.isKerberosSecurityEnabled(currentUser)) {
boolean useTicketCache = flinkConfiguration.getBoolean(SecurityOptions.KERBEROS_LOGIN_USETICKETCACHE);

if (!HadoopUtils.areKerberosCredentialsValid(currentUser, useTicketCache)) {
  throw new RuntimeException("Hadoop security with Kerberos is enabled but the login user " +
    "does not have Kerberos credentials or delegation tokens!");
}

}

/TODO 部署前检查:jar包路径、conf路径、yarn最大核数…/
isReadyForDeployment(clusterSpecification);

// ------------------ Check if the specified queue exists --------------------

/TODO 检查指定的yarn队列是否存在/
checkYarnQueues(yarnClient);

// ------------------ Check if the YARN ClusterClient has the requested resources --------------
/TODO 检查yarn是否有足够的资源/

// Create application via yarnClient
final YarnClientApplication yarnApplication = yarnClient.createApplication();
final GetNewApplicationResponse appResponse = yarnApplication.getNewApplicationResponse();

Resource maxRes = appResponse.getMaximumResourceCapability();

final ClusterResourceDescription freeClusterMem;
try {
freeClusterMem = getCurrentFreeClusterResources(yarnClient);
} catch (YarnException | IOException e) {
failSessionDuringDeployment(yarnClient, yarnApplication);
throw new YarnDeploymentException(“Could not retrieve information about free cluster resources.”, e);
}

final int yarnMinAllocationMB = yarnConfiguration.getInt(
YarnConfiguration.RM_SCHEDULER_MINIMUM_ALLOCATION_MB,
YarnConfiguration.DEFAULT_RM_SCHEDULER_MINIMUM_ALLOCATION_MB);
if (yarnMinAllocationMB <= 0) {
throw new YarnDeploymentException(“The minimum allocation memory "
+ “(” + yarnMinAllocationMB + " MB) configured via '” + YarnConfiguration.RM_SCHEDULER_MINIMUM_ALLOCATION_MB
+ “’ should be greater than 0.”);
}

final ClusterSpecification validClusterSpecification;
try {
validClusterSpecification = validateClusterResources(
clusterSpecification,
yarnMinAllocationMB,
maxRes,
freeClusterMem);
} catch (YarnDeploymentException yde) {
failSessionDuringDeployment(yarnClient, yarnApplication);
throw yde;
}

LOG.info(“Cluster specification: {}”, validClusterSpecification);

final ClusterEntrypoint.ExecutionMode executionMode = detached ?
ClusterEntrypoint.ExecutionMode.DETACHED
: ClusterEntrypoint.ExecutionMode.NORMAL;

flinkConfiguration.setString(ClusterEntrypoint.EXECUTION_MODE, executionMode.toString());

/TODO 开始启动AM/
ApplicationReport report = startAppMaster(
flinkConfiguration,
applicationName,
yarnClusterEntrypoint,
jobGraph,
yarnClient,
yarnApplication,
validClusterSpecification);

// print the application id for user to cancel themselves.
if (detached) {
final ApplicationId yarnApplicationId = report.getApplicationId();
logDetachedClusterInformation(yarnApplicationId, LOG);
}

setClusterEntrypointInfoToConfig(report);

return () -> {
try {
return new RestClusterClient<>(flinkConfiguration, report.getApplicationId());
} catch (Exception e) {
throw new RuntimeException(“Error while creating RestClusterClient.”, e);
}
};
}


  

1)部署前检查:jar包路径、conf路径、yarn最大核数

  

private void isReadyForDeployment(ClusterSpecification clusterSpecification) throws Exception {

if (this.flinkJarPath == null) {
throw new YarnDeploymentException(“The Flink jar path is null”);
}
if (this.flinkConfiguration == null) {
throw new YarnDeploymentException(“Flink configuration object has not been set”);
}

// Check if we don’t exceed YARN’s maximum virtual cores.
final int numYarnMaxVcores = yarnClusterInformationRetriever.getMaxVcores();

int configuredAmVcores = flinkConfiguration.getInteger(YarnConfigOptions.APP_MASTER_VCORES);
if (configuredAmVcores > numYarnMaxVcores) {
throw new IllegalConfigurationException(
String.format(“The number of requested virtual cores for application master %d” +
" exceeds the maximum number of virtual cores %d available in the Yarn Cluster.",
configuredAmVcores, numYarnMaxVcores));
}

int configuredVcores = flinkConfiguration.getInteger(YarnConfigOptions.VCORES, clusterSpecification.getSlotsPerTaskManager());
// don’t configure more than the maximum configured number of vcores
if (configuredVcores > numYarnMaxVcores) {
throw new IllegalConfigurationException(
String.format(“The number of requested virtual cores per node %d” +
" exceeds the maximum number of virtual cores %d available in the Yarn Cluster." +
" Please note that the number of virtual cores is set to the number of task slots by default" +
" unless configured in the Flink config with ‘%s.’",
configuredVcores, numYarnMaxVcores, YarnConfigOptions.VCORES.key()));
}

// check if required Hadoop environment variables are set. If not, warn user
if (System.getenv(“HADOOP_CONF_DIR”) == null &&
System.getenv(“YARN_CONF_DIR”) == null) {
LOG.warn("Neither the HADOOP_CONF_DIR nor the YARN_CONF_DIR environment variable is set. " +
"The Flink YARN Client needs one of these to be set to properly load the Hadoop " +
“configuration for accessing YARN.”);
}
}


  

2)检查yarn资源是否够  

  

private ClusterResourceDescription getCurrentFreeClusterResources(YarnClient yarnClient) throws YarnException, IOException {
List nodes = yarnClient.getNodeReports(NodeState.RUNNING);

int totalFreeMemory = 0;
int containerLimit = 0;
int[] nodeManagersFree = new int[nodes.size()];

for (int i = 0; i < nodes.size(); i++) {
NodeReport rep = nodes.get(i);
int free = rep.getCapability().getMemory() - (rep.getUsed() != null ? rep.getUsed().getMemory() : 0);
nodeManagersFree[i] = free;
totalFreeMemory += free;
if (free > containerLimit) {
containerLimit = free;
}
}
return new ClusterResourceDescription(totalFreeMemory, containerLimit, nodeManagersFree);
}


  

**找到最小资源配置**

  

RM\_SCHEDULER\_MINIMUM\_ALLOCATION\_MB=yarn.scheduler.minimum-allocation-mb

DEFAULT_RM_SCHEDULER_MINIMUM_ALLOCATION_MB=1024


  

![图片](https://img-blog.csdnimg.cn/img_convert/66c9f8a8c48db96275b7f71cf99efc38.png)

你可能感兴趣的:(Flink,大数据,flink,java,大数据)