- 亦菲喊你来学机器学习(21) --数据清洗
方世恩
机器学习人工智能python算法
数据清洗在数据分析和机器学习项目中,数据清洗(DataCleaning)是一个至关重要的步骤,它涉及到处理原始数据中的错误、缺失值、异常值、重复记录以及不一致的格式等问题。data.fillna()是Pandas库中用于处理缺失值(NaN值)的一个非常有用的方法。1.读取数据importpandasaspddata=pd.read_excel('矿物数据.xlsx')data=data[data[
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- 数据切分的艺术:使用PyTorch的torch.utils.data.random_split精粹指南
2402_85758349
机器学习
数据切分的艺术:使用PyTorch的torch.utils.data.random_split精粹指南在机器学习项目中,合理地分割数据集至关重,它不仅关系到模型训练的有效性,还直接影响到模型的泛化能力。PyTorch提供了一个强大的工具torch.utils.data.random_split,它能够以随机的方式将数据集分割成若干个子集。本文将详细介绍如何使用这一工具进行数据集的随机分割。1.随机
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- Keras深度学习框架实战(2):估计模型训练所需的样本量
MUKAMO
AIPython应用Keras框架深度学习keras人工智能
1、模型训练样本量评估概述1.1样本量评估的意义预估模型需要的样本量对于机器学习项目的成功至关重要,以下是几个主要原因:防止过拟合与欠拟合:过拟合:当模型在训练数据上表现极好,但在未见过的测试数据上表现糟糕时,就发生了过拟合。这通常是因为模型过于复杂,而训练数据不足以支持其学习数据的真实模式。通过预估足够的样本量,我们可以减少过拟合的风险。欠拟合:与过拟合相反,欠拟合是模型未能捕捉到数据中的关键模
- 《Python机器学习项目实战》书籍介绍
袁袁袁袁满
python机器学习开发语言
文章目录书籍介绍主要内容书籍目录书籍介绍《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关
- 已解决ModuleNotFoundError: No module named ‘tensorflow‘异常的正确解决方法,亲测有效!!!
小 明
Bug解决大全tensorflow人工智能pythonjava开发语言ExceptionError
已解决ModuleNotFoundError:Nomodulenamed'tensorflow'异常的正确解决方法,亲测有效!!!文章目录问题分析报错原因解决思路解决方法总结在深度学习和机器学习项目中,TensorFlow是一个极为常用和功能强大的库。如果你在导入TensorFlow时遭遇到了ModuleNotFoundError:Nomodulenamed'tensorflow'这一错误,那么本
- 【机器学习案例6】使用机器学习从图像中提取突出的颜色(含源码)
suoge223
机器学习实用指南机器学习人工智能python
专栏导读作者介绍:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习笔记】 15 机器学习项目流程
RIKI_1
机器学习机器学习笔记人工智能
机器学习的一般步骤数据清洗数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。探索性数据分析(EDA探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算统计数据,以便探索我们的数据。目的是找到异常,模式,趋势或关系。这些可能是有趣的(例如,找到两个变量之间的相关性),或者它们可用
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- 如何交付机器学习项目:一份机器学习工程开发流程指南
城市中迷途小书童
摘要:本文描述机器学习任务的“OODA环”的概念,迭代地执行四个过程:分析、选择方法、实现、测量步骤,循环此过程以提升开发效率。随着机器学习(ML)成为每个行业的重要组成部分,对机器学习工程师(MLE)的需求急剧增长。MLE需要将机器学习技能与软件工程专业知识相结合,为特定应用程序找到高性能的模型,并应对出现的实施挑战——从构建训练基础架构到准备部署模型。在新的机器学习团队中,遇到最常见的障碍之一
- 机器学习项目之数据清洗
井底哇哇
笔记机器学习数据分析python
前言数据清洗是机器学习项目中最为琐碎而又繁重的工作之一,下面总结一些经常用到的数据清洗方法与Python实现,以探索能否用更加自动化的手段来简化数据清洗工作。包括:1.缺失值处理2.格式内容清洗3.重复值处理4.不一致数据处理5.错误数据处理6.离群点处理7.高杠杆点处理8.强影响点处理1缺失值缺失值是最常见的数据问题之一,按缺失比例,我们大致可以将数据的缺失分为两种情况:1)严重缺失这种情况首先
- 《Git 简易速速上手小册》第10章:未来趋势与扩展阅读(2024 最新版)
江帅帅
《Git简易速速上手小册》gitpython网络安全爬虫数据分析githubgitlab
文章目录10.1Git与开源社区10.1.1基础知识讲解10.1.2重点案例:Python社区使用Git10.1.3拓展案例1:Git在大型开源项目中的角色10.1.4拓展案例2:支持开源项目的Git托管平台10.2新兴技术与Git的整合10.2.1基础知识讲解10.2.2重点案例:使用Git管理Python机器学习项目10.2.3拓展案例1:整合Git与JupyterNotebooks10.2.
- Python 机器学习 交叉验证、网格搜索
weixin_42098295
python机器学习开发语言
Python的机器学习项目中,交叉验证(Cross-Validation)和网格搜索(GridSearch)是两种重要的技术,通常用于模型选择和超参数优化。交叉验证和网格搜索也是机器学习中常用的两种技术,可以有效地提高模型的性能。1、交叉验证(Cross-Validation)交叉验证是一种评估模型泛化性能的方法。它涉及将数据集分成几个部分,通常是“折叠”(folds),然后将模型在一个折叠上进行
- 使用 AgGrid 增强您的 Streamlit 表格:高级提示和技巧
code2day
Python源码技巧大全streamlitpythonag-grid
Streamlit是一个功能强大且用户友好的Python库,用于创建Web应用程序。它非常适合数据分析和机器学习项目,并且可以轻松地将您的应用程序部署到StreamlitCloud。在过去一年半的时间里,无论是小型项目还是复杂项目,我都使用过Streamlit,我发现它是一个非常宝贵的工具。虽然有很多介绍Streamlit的文章和视频(这里是最近的一篇),但我想重点介绍它的一个附加组件:Strea
- Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(九)
绝不原创的飞龙
人工智能机器学习sklearntensorflow
原文:Hands-OnMachineLearningwithScikit-Learn,Keras,andTensorFlow译者:飞龙协议:CCBY-NC-SA4.0附录A:机器学习项目清单此清单可以指导您完成机器学习项目。有八个主要步骤:构建问题并全局看问题。获取数据。探索数据以获得见解。准备数据以更好地暴露底层数据模式给机器学习算法。探索许多不同的模型并列出最佳模型。微调您的模型并将它们组合成
- 【深度学习:机器学习模型】如何构建您的第一个机器学习模型
jcfszxc
深度学习知识专栏深度学习机器学习人工智能
【深度学习:机器学习模型】如何构建您的第一个机器学习模型第1步:将您的机器学习项目置于情境中第2步:探索数据并选择机器学习算法的类型监督学习无监督学习强化学习第3步:数据收集第4步:选择模型评估方法维护保留验证集K折验证通过改组进行迭代K折验证第5步:预处理和清理数据集处理非数字列解决缺失值检测异常值Z分数基于密度的噪声应用空间聚类(DBSCAN)分析特征选择Univariate单变量Multiv
- 机器学习系列 16:使用 scikit-learn 的 Pipeline
加百力
深度学习机器学习scikit-learn人工智能
在机器学习项目中,我们经常需要进行大量的数据预处理步骤,最后用处理干净的数据集来拟合机器学习算法得到一个合适的机器学习模型。scikit-learn提供了一个强大的Pipeline类来帮助我们将所有的数据预处理步骤和训练模型的步骤串起来。就像流水线一样,前一个步骤处理完的结果输入到下一个步骤,依次处理。这里我们将使用UCI提供的威斯康星洲乳腺癌数据集,下载地址如下:https://archive.
- 深度学习-使用Labelimg数据标注
Damon小智
图像识别深度学习人工智能labelimgyolo
数据标注是计算机视觉和机器学习项目中至关重要的一步,而使用工具进行标注是提高效率的关键。本文介绍了LabelImg,一款常用的开源图像标注工具。用户可以在图像中方便而准确地标注目标区域,为训练机器学习模型提供高质量的标注数据。LabelImg已经成为研究者和开发者在计算机视觉项目中不可或缺的工具之一。一、安装Labelimg1、切换虚拟环境为了确保LabelImg能够与项目环境兼容,首先需要切换到
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- 机器学习-采用Pandas数据导入
weixin_38174032
机器学习python机器学习
通过Pandas来导入CSV文件要使用pandas.read_csv()函数。这个函数返回值是DataFrame,可以很方便进行下一步的处理。在机器学习项目中,经常用Pandas来做数据清洗与数据准备工作。常使用这种方法。代码如下:#!/user/bin/python#-*-coding:UTF-8-*-frompandasimportread_csv#使用Pandas导入CSV数据filenam
- VIVO- AI进展--机器学习平台建设
数据智能谷
来源InfoQ网站技术访谈,本文系转发2020年1月21日10:56机器学习项目痛点起初,vivo也是采用类似“作坊式”的团队模式,每个团队针对各自要解决的问题进行规划,由此产生了一种小作坊式的生产局面。随着应用规模逐渐增大,这种模式的局限就暴露出来了。鲁文龙表示,这种模式下的机器学习项目会出现如下问题:1、特征与样本层面,添加新特征流程较长,且不同业务间特征无法共用;特征与样本的处理和存储系统性
- 【机器学习】实验记录工具
Encarta1993
机器学习人工智能
Weights&Biases(简称为WandB)是一个用于跟踪机器学习实验、可视化实验结果并进行协作的工具。它提供了一个简单易用的界面,让用户可以轻松地记录模型训练过程中的指标、超参数和输出结果,并将这些信息可视化展示。WandB还支持团队协作,可以让团队成员共享实验记录、交流想法,并进行实验结果的比较和分析。通过WandB,用户可以更好地管理和理解他们的机器学习项目,加速实验迭代过程,提高模型的
- 基于朴素贝叶斯的文本分类系统的设计与实现
@斯里
分类数据挖掘人工智能
基于线性回归的预测系统:这是简单而基础的机器学习项目,用于预测单变量或多变量问题。例如,预测房价、销售额等。基于逻辑回归的分类系统:虽然名字中有“回归”,但逻辑回归是用于解决分类问题的,如垃圾邮件判别、病人疾病诊断等二分类问题。基于决策树/随机森林的预测和分类系统:这些算法直观且容易理解,具备良好的解释性,很多复杂的问题也可以用这类方法解决。例如,预测公司的员工流失、信贷风险评估等。基于k近邻(k
- 《scikit-learn》xgboost
星海千寻
机器学习scikit-learnxgboost
XGBoost算法•XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。•XGBoost的基学习器除了可以是CART(这个时候就是GBDT)也可以是线性分类器,而GBDT只能是CART。•XGBoost的目标函数的近似用了二阶泰勒展开,模型优化效果更好。•XGBoost
- 2、机器学习基础数据探索
AI算法蒋同学
从零开始的机器学习导论机器学习人工智能
加载并理解您的数据。本课程所需数据集夸克网盘下载链接:https://pan.quark.cn/s/9b4e9a1246b2提取码:uDzP文章目录1、使用Pandas了解你的数据2、解释数据描述1、使用Pandas了解你的数据任何机器学习项目的第一步都是熟悉数据。您将使用Pandas库进行此操作。Pandas是数据科学家用来探索和操纵数据的主要工具。大多数人在代码中将panda缩写为pdIn[1
- 【机器学习300问】7、怎么进行机器学习?机器学习的基本流程是什么?
小oo呆
【机器学习】机器学习人工智能
一、写在前面也许你和我一样,在刚开始学习机器学习的基本知识的时候,学到了很多的零碎知识点,无法穿成线织成网,本文是机器学习中提纲挈领的一环,将和你一起将今后所有的知识点都捕捉在这张网中。当你在问“我该改怎么进行机器学习?”或者“我怎么去用机器学习?”的时候,其实你是想知道“机器学习的基本流程是什么?”。每当你开始一个机器学习项目的时候,请你务必在心中复习一下机器学习的基本流程。二、机器学习的基本流
- 机器学习基本算法:算法流程和算法分类
缘起性空、
机器学习算法人工智能
1、算法流程机器学习的过程是一个完整的项目周期,其中包括数据的采集、数据的特征提取与分类,之后采用何种算法去创建机器学习模型从而获得预测数据。算法流程从上图可以看出一个完整的机器学习项目包含以下这些内容:输入数据:通过自然采集的数据集,包含被标识的和未被标识的部分,作为机器学习的最基础部分。特征提取:通过多种方式对数据的特征值进行提取,一般而言,包含特征越多的数据,机器学习设计出的模型就越精确,处
- 机器学习_实战框架
you_are_my_sunshine*
机器学习机器学习人工智能
文章目录介绍机器学习的实战框架1.定义问题2.收集数据和预处理(1).收集数据(2).数据可视化(3).数据清洗(4).特征工程(5).构建特征集和标签集(6).拆分训练集、验证集和测试集。3.选择算法并建立模型4.训练模型5.模型的评估和优化介绍机器学习的实战框架一个机器学习项目从开始到结束大致分为5步,分别是定义问题、收集数据和预处理、选择算法和确定模型、训练拟合模型、评估并优化模型性能。这5
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc