Python数据获取——图片数据提取

图片数据提取

  • 一、利用exifread提取图片的EXIF信息
  • 二、循环遍历图片信息

比如我随便从手机上传一张图片到我的电脑里,通过python可以获取这张照片的所有信息。如果是数码相机拍摄的照片,我们在属性里可以找到照片拍摄的时间,拍摄的经纬度,海拔高度。
那么这些信息有什么作用呢?
有很多功能…比如用户画像,客户信息标签设定等等,用户喜欢拍摄照片的季节,时间点,所使用的相机的参数指标可以反应出一个人的金钱状况,对于其拍摄的内容,我们可以通过AI的方式对照片的内容信息进行提取,从而判断一个人的兴趣爱好
Python数据获取——图片数据提取_第1张图片


一、利用exifread提取图片的EXIF信息

exifread介绍:

EXIF信息,是可交换图像文件的缩写,是专门为数码相机的照片设定的,可以记录数码照片的属性信息和拍摄数据。EXIF可以附加于JPEGTIFFRIFF等文件之中,为其增加有关数码相机拍摄信息的内容和索引图或图像处理软件的版本信息。

首先要安装ExifRead

pip3 install ExifRead
pic=r'D:\S072003Python\input\test\test.jpg'

import exifread
f = open(pic, 'rb')
tags = exifread.process_file(f)
print(tags) #内有相机型号,拍摄时间,经纬度等

在这里插入图片描述

tags

Python数据获取——图片数据提取_第2张图片
print(tags)和tags获取数据的格式不同。

tags['Image ImageWidth']
tags['Image ImageLength']
tags['Image ExifOffset']
tags['Image Orientation']
tags['Image DateTime']
tags['EXIF WhiteBalance']
tags['EXIF ISOSpeedRatings']
tags['EXIF FocalLength']
tags['EXIF Flash']
tags['EXIF LightSource']
exifcolumns=['Image ImageWidth','Image ImageLength','Image ExifOffset','Image Orientation','Image DateTime','EXIF WhiteBalance','EXIF ISOSpeedRatings','EXIF FocalLength','EXIF Flash','EXIF LightSource'] # 把要提取的数据都封装在列表当中
for i in range(len(exifcolumns)):
    print(tags[exifcolumns[i]]) # 使用循环拿到所有的数据

Python数据获取——图片数据提取_第3张图片

二、循环遍历图片信息

任务:一次性获得以下图片的"Image ImageWidth"信息。写一个循环即可:
Python数据获取——图片数据提取_第4张图片

import exifread
import os
import pandas as pd 
import glob 
pic_list=glob.glob(r'C:\Users\Lenovo\Pictures\Saved Pictures\*.jpg')  # 如果是png,jpeg,bmp等数据格式,如何设置?

for i in pic_list:
    fr=open(i,'rb')
    tags=exifread.process_file(fr)
    if "Image ImageWidth" in tags:  # 条件判断,因为并不是所有的照片都有"Image ImageWidth"
        print(tags["Image ImageWidth"])   
# 经纬度获取
import exifread
import os
import pandas as pd 
import glob 
pic_list=glob.glob(r'C:\Users\Lenovo\Pictures\Saved Pictures\*.jpg')  

latlonlists=[]
for i in pic_list:
    fr=open(i,'rb')
    tags=exifread.process_file(fr)
    if "GPS GPSLatitude" in tags:  # 条件判断,因为并不是所有的照片都有"Image ImageWidth"
        # 维度转换
        lat_ref=tags["GPS GPSLatitudeRef"]
        lat=tags["GPS GPSLatitude"].printable[1:-1].replace(" ","").replace("/",",").split(",")
        lat=float(lat[0])+float(lat[1])/60+float(lat[2])/3600
        if lat_ref  in  ["N"]:    # 表示是南半球的数据
            lat=lat*(-1)
        # 经度转换
        lon_ref=tags["GPS GPSLongitudeRef"]
        lon=tags["GPS GPSLongitude"].printable[1:-1].replace("","").replace("/",",").split(",")
        lon=float(lon[0])+float(lon[1])/60+float(lon[2])/3600
        if lon_ref  in  ["E"]:    # 表示是西半球的数据
            lon=lon*(-1)
            
        print("维度:",lat,"经度:",lon)
        latlonlist=[lat,lon]
        latlonlists.append(latlonlist)  

你可能感兴趣的:(#,【大数据分析】,【Phthon】,python,开发语言,后端)