吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题

因为文字版排版未优化,带有上下标的公式阅读性较差,先贴出截图。

文字版本在截图之后。

截图版:

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第1张图片

Note: The output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第2张图片

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第3张图片

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第4张图片

Note: "*" operator indicates element-wise multiplication. Element-wise multiplication requires same dimension between two matrices. It's going to be an error.

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第5张图片

Ans: C(注意:截图所示答案D错误,正确答案为C)

Note: A stupid way to validate this is use the formula Z^(l) = W^(l)A^(l) when l = 1, then we have

    - A^(1) = X

    - X.shape = (n_x, m)

    - Z^(1).shape = (n^(1), m)

    - W^(1).shape = (n^(1), n_x)

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第6张图片

         Ans: D

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第7张图片

         Ans: B

 

吴恩达深度学习学习笔记——C1W2——神经网络基础——练习题_第8张图片

         Ans: B

 

 

文字版:

1. What does a neuron compute?

  •  A neuron computes an activation function followed by a linear function (z = Wx + b)
  •  A neuron computes a linear function (z = Wx + b) followed by an activation function
  •  A neuron computes a function g that scales the input x linearly (Wx + b)
  •  A neuron computes the mean of all features before applying the output to an activation function

Note: The output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

 

2. Which of these is the "Logistic Loss"?

L(i)(y^(i),y(i))=y(i)log(y^(i))+(1−y(i))log(1−y^(i))

Note: We are using a cross-entropy loss function.

 

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

   x = img.reshape((32 * 32 * 3, 1))

 

4. Consider the two following random arrays "a" and "b":

a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

What will be the shape of "c"?

b (column vector) is copied 3 times so that it can be summed to each column of a. Therefore, c.shape = (2, 3).

 

5. Consider the two following random arrays "a" and "b":

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a * b

What will be the shape of "c"?

"*" operator indicates element-wise multiplication. Element-wise multiplication requires same dimension between two matrices. It's going to be an error.

 

6. Suppose you have n_x input features per example. Recall that X=[x^(1), x^(2)...x^(m)]. What is the dimension of X?

(n_x, m)

Note: A stupid way to validate this is use the formula Z^(l) = W^(l)A^(l) when l = 1, then we have

  • A^(1) = X
  • X.shape = (n_x, m)
  • Z^(1).shape = (n^(1), m)
  • W^(1).shape = (n^(1), n_x)

 

7. Recall that np.dot(a,b) performs a matrix multiplication on a and b, whereas a*b performs an element-wise multiplication.

Consider the two following random arrays "a" and "b":

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a, b)

What is the shape of c?

c.shape = (12288, 45), this is a simple matrix multiplication example.

 

8. Consider the following code snippet:

# a.shape = (3,4)
# b.shape = (4,1)
for i in range(3):
  for j in range(4):
    c[i][j] = a[i][j] + b[j]

How do you vectorize this?

c = a + b.T

 

9. Consider the following code:

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a * b

What will be c?

This will invoke broadcasting, so b is copied three times to become (3,3), and is an element-wise product so c.shape = (3, 3).

 

10. Consider the following computation graph.

What is the output J?

J = u + v - w
  = a * b + a * c - (b + c)
  = a * (b + c) - (b + c)
  = (a - 1) * (b + c)

Answer: (a - 1) * (b + c)

你可能感兴趣的:(机器学习,深度学习(ML/DL))