Paddle OCR 移动端识别

由于工作需求,需要免费的一款移动端文字识别工具,网上第三方都需要付费方可使用,实在是难搞,于是通过Paddle OCR搭建了一款识别demo
准确率挺高,支持中英文。看效果如图:
Paddle OCR 移动端识别_第1张图片
下载地址:https://download.csdn.net/download/m0_37809901/85214446

文字识别是通过C++实现的


using namespace paddle::lite_api;
using namespace cv;


struct Object {
    int batch_id;
    cv::Rect rec;
    int class_id;
    float prob;
};

std::mutex mtx;
std::shared_ptr<PaddlePredictor> net_ocr1;
std::shared_ptr<PaddlePredictor> net_ocr2;
Timer tic;
long long count = 0;
- (NSArray *) ocr_infer:(cv::Mat) originImage{
    int max_side_len = 960;
    float ratio_h{};
    float ratio_w{};
    cv::Mat image;
    cv::cvtColor(originImage, image, cv::COLOR_RGB2BGR);

    cv::Mat img;
    image.copyTo(img);

    img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w);
    cv::Mat img_fp;
    img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

    std::unique_ptr<Tensor> input_tensor(net_ocr1->GetInput(0));
    input_tensor->Resize({1, 3, img_fp.rows, img_fp.cols});
    auto *data0 = input_tensor->mutable_data<float>();
    const float *dimg = reinterpret_cast<const float *>(img_fp.data);
    neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, self.mean, self.scale);
    tic.clear();
    tic.start();
    net_ocr1->Run();
    std::unique_ptr<const Tensor> output_tensor(std::move(net_ocr1->GetOutput(0)));
    auto *outptr = output_tensor->data<float>();
    auto shape_out = output_tensor->shape();

    int64_t out_numl = 1;
    double sum = 0;
    for (auto i : shape_out) {
        out_numl *= i;
    }

    int s2 = int(shape_out[2]);
    int s3 = int(shape_out[3]);

    cv::Mat pred_map = cv::Mat::zeros(s2, s3, CV_32F);
    memcpy(pred_map.data, outptr, s2 * s3 * sizeof(float));
    cv::Mat cbuf_map;
    pred_map.convertTo(cbuf_map, CV_8UC1, 255.0f);

    const double threshold = 0.1 * 255;
    const double maxvalue = 255;
    cv::Mat bit_map;
    cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

    auto boxes = boxes_from_bitmap(pred_map, bit_map);

    std::vector<std::vector<std::vector<int>>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, image);


    cv::Point rook_points[filter_boxes.size()][4];

    for (int n = 0; n < filter_boxes.size(); n++) {
        for (int m = 0; m < filter_boxes[0].size(); m++) {
            rook_points[n][m] = cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
        }
    }

    NSMutableArray *result = [[NSMutableArray alloc] init];

    for (int i = 0; i < filter_boxes.size(); i++) {
        cv::Mat crop_img;
        crop_img = get_rotate_crop_image(image, filter_boxes[i]);
        OcrData *r = [self paddleOcrRec:crop_img ];
        NSMutableArray *points = [NSMutableArray new];
        for (int jj = 0; jj < 4; ++jj) {
            NSValue *v = [NSValue valueWithCGPoint:CGPointMake(
                    rook_points[i][jj].x / CGFloat(originImage.cols),
                    rook_points[i][jj].y / CGFloat(originImage.rows))];
            [points addObject:v];
        }
        r.polygonPoints = points;
        [result addObject:r];
    }
    NSArray* rec_out =[[result reverseObjectEnumerator] allObjects];
    tic.end();
    std::cout<<"infer time: "<<tic.get_sum_ms()<<"ms"<<std::endl;
    return rec_out;
}

你可能感兴趣的:(ios,paddle)