Python 绘制数据图表

Python 绘制数据图表

  • matplotlib绘图库模块安装
pip install matplotlib

Python 绘制数据图表_第1张图片

  • 导入pyplot子模块
import matplotlib.pyplot as plt
  • 官网:http://matplotlib.org
  • 官方文档:https://matplotlib.org/stable/index.html

1. 绘制折线图

1.1 绘制简单的折线图

import matplotlib
import matplotlib.pyplot as plt

# 设置字体为微软雅黑,解决中文显示问题
matplotlib.rc("font", family='Microsoft YaHei')

# 1.准备数据
squares = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

# 2.画线plot()
# linewidth设置线条宽度
plt.plot(squares, linewidth=2)  # 列表内的数据被视为y轴的值,x轴的值会根据列表值的索引位置自动产生

# 3.设置x、y轴的最小刻度和最大刻度
plt.axis([0, 10, 0, 100])  # 将x轴设为0~10,将y轴设为0~100

# 4.设置标题及字体大小
"""
title():图表标题,title(标题名称,fontsize=字体大小)
xlabel():x轴标题
ylabel():y轴标题
"""
plt.title(label='0~10的平方', fontsize=18)
plt.xlabel(xlabel='值', fontsize=15)
plt.ylabel(ylabel='平方值', fontsize=15)

# 5.设置坐标轴刻度
"""
使用tick_params()方法设置:
    - 应用范围(axis):x-->应用到x轴,y-->应用到y轴,both-->应用到x轴和y轴
    - 坐标轴的刻度大小(labelsize)
    - 线条颜色(color)
如:tick_params(axis='x', labelsize=10, color='green')
"""
plt.tick_params(axis='both', labelsize=12, color='red', labelcolor='green')

# 显示绘制的图形
plt.show()

效果:
Python 绘制数据图表_第2张图片

1.2 修改图表的初始值

import matplotlib
import matplotlib.pyplot as plt

# 设置字体为微软雅黑,解决中文显示问题
matplotlib.rc("font", family='Microsoft YaHei')

# 1.准备数据
squares = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

# 索引列表
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

# 2.画线plot()
# linewidth设置线条宽度
plt.plot(seq, squares, linewidth=2.5)

# 设置标题及字体大小
plt.title(label='1~10的平方', fontsize=18)
plt.xlabel(xlabel='值', fontsize=15)
plt.ylabel(ylabel='平方值', fontsize=15)

# 5.设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red', labelcolor='green')

# 显示绘制的图形
plt.show()

效果:
Python 绘制数据图表_第3张图片

1.3 多组数据的应用

# author:mlnt
# createdate:2022/8/17

import matplotlib
import matplotlib.pyplot as plt

# 设置字体为微软雅黑,解决中文显示问题
matplotlib.rc("font", family='Microsoft YaHei')

# 1.准备数据
data1 = [1, 4, 9, 16, 25, 36, 49, 64, 81]
data2 = [1, 3, 5, 8, 13, 21, 34, 55, 89]

# 索引列表
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]

# 2.画线plot()
# linewidth设置线条宽度
plt.plot(seq, data1, seq, data2, linewidth=2.5)

# 设置标题及字体大小
plt.title(label='Test Chart', fontsize=18)
plt.xlabel(xlabel='x-value', fontsize=14)
plt.ylabel(ylabel='y-value', fontsize=14)

# 5.设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red', labelcolor='green')

# 显示绘制的图形
plt.show()

效果:
Python 绘制数据图表_第4张图片

1.4 设置线条颜色及样式

  • 设置颜色,可在plot()中添加参数:

    • ‘b’: blue
    • ‘c’: cyan
    • ‘g’: green
    • ‘k’: black
    • ‘m’: magenta
    • ‘r’: red
    • ‘w’: white
    • ‘y’: yellow
  • 设置线条样式:

    • '-‘或’solid’: 预设实线
    • '–‘或’dashed’: 虚线
    • '-.‘或’dashdot’: 虚点线
    • ':‘或’dotted’:点线
    • ‘.’:点标记
    • ‘,’:像素标记
    • ‘o’: 圆标记
    • ‘v’: 反三角标记
    • ‘^’: 三角标记
    • ‘s’:方形标记
    • ‘p’:五角标记
    • ‘*’: 星号标记
    • ‘+’:加号标记
    • ‘-’:减号标记
    import matplotlib.pyplot as plt
    
    # 1.准备数据
    data1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]            # data1线条
    data2 = [1, 4, 9, 16, 25, 36, 49, 64, 81]      # data2线条
    data3 = [1, 3, 5, 8, 13, 21, 34, 55, 89]       # data3线条
    data4 = [1, 6, 12, 20, 30, 41, 56, 72, 90]     # data4线条
    
    # 索引列表
    seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    plt.plot(seq, data1, 'g--', seq, data2, 'r-.', seq, data3, 'b:', seq, data4, 'mp')
    
    # 设置标题及字体大小
    plt.title(label='Test Chart', fontsize=18)
    plt.xlabel(xlabel='x-value', fontsize=14)
    plt.ylabel(ylabel='y-value', fontsize=14)
    
    # 设置坐标轴刻度
    plt.tick_params(axis='both', labelsize=12, color='red')
    
    plt.show()
    

效果:
Python 绘制数据图表_第5张图片

1.5 刻度设置

import matplotlib
import matplotlib.pyplot as plt

# 设置字体为微软雅黑,解决中文显示问题
matplotlib.rc("font", family='Microsoft YaHei')
# 1.准备数据
gold_medal = [15, 5, 16, 16, 28, 32, 51, 38, 26, 38]
silver_medal = [8, 11, 22, 22, 16, 17, 21, 27, 18, 32]
bronze_medal = [9, 12, 16, 12, 15, 14, 28, 23, 26, 18]

# 索引列表
year = [1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2021]


"""
设置刻度:
- xticks():设置x轴刻度
- yticks():设置y轴刻度
"""
# 设置x轴刻度
plt.xticks(year)

# 设置线条样式
plt.plot(year, gold_medal, '-*', year, silver_medal, '-o', year, bronze_medal, '-^')

# 设置标题及字体大小
plt.title('中国历届奥运会奖牌情况', fontsize=20)
plt.xlabel('年份', fontsize=14)
plt.ylabel('数量/枚', fontsize=14)
# 设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red')
# 显示图表
plt.show()

效果:
Python 绘制数据图表_第6张图片

1.6 图例legend()

参数loc可以设置图例的位置:

  • ‘best’: 0,
  • ‘upper right’: 1 ,–>右上角
  • ‘upper left’: 2,–>左上角
  • ‘lower left’: 3,–>左下角
  • ‘lower right’: 4,–>右下角
  • ‘right’: 5,
  • ‘center left’: 6,–>左侧中央
  • ‘center right’: 7,–>右侧中间
  • ‘lower center’: 8,–>底部正中
  • ‘upper center’: 9,–>顶部正中
  • ‘center’: 10
  • 将图例放在图表内
import matplotlib
import matplotlib.pyplot as plt

# 设置字体为微软雅黑,解决中文显示问题
matplotlib.rc("font", family='Microsoft YaHei')
# 1.准备数据
gold_medal = [15, 5, 16, 16, 28, 32, 51, 38, 26, 38]
silver_medal = [8, 11, 22, 22, 16, 17, 21, 27, 18, 32]
bronze_medal = [9, 12, 16, 12, 15, 14, 28, 23, 26, 18]

# 索引列表
year = [1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2021]


"""
设置刻度:
- xticks():设置x轴刻度
- yticks():设置y轴刻度
"""
# 设置x轴刻度
plt.xticks(year)

# 设置线条样式
line_gold, = plt.plot(year, gold_medal, '-*', label='gold_medal')
line_silver, = plt.plot(year, silver_medal, '-o', label='silver_medal')
line_bronze, = plt.plot(year, bronze_medal, '-^', label='bronze_medal')

# 设置图例
"""
参数loc可以设置图例的位置
    'best': 0,
    'upper right': 1,-->右上角
    'upper left': 2,-->左上角
    'lower left': 3,-->左下角
    'lower right': 4,-->右下角
    'right': 5,
    'center left': 6,-->左侧中央
    'center right': 7,-->右侧中间
    'lower center': 8,-->底部正中
    'upper center': 9,-->顶部正中
    'center': 10
"""
plt.legend(handles=[line_gold, line_silver, line_bronze], loc='best')
# 放在图表内的右上角
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc=1)
# 放在图表内的左上角
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc='upper left')
# 放在图表内的左下角
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc=3)
# 放在图表内的右下角
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc=4)

# 放在图表内的左侧中央
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc='center left')
# 放在图表内的右侧中央
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc='center right')
# 放在图表内的底部正中
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc='lower center')
# 放在图表内的顶部正中
# plt.legend(handles=[line_gold, line_silver, line_bronze], loc='upper center')

# 设置标题及字体大小
plt.title('中国历届奥运会奖牌情况', fontsize=20)
plt.xlabel('年份', fontsize=14)
plt.ylabel('数量/枚', fontsize=14)
# 设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red')
# 显示图表
plt.show()

效果:
Python 绘制数据图表_第7张图片

  • 将图例放在图表外,使用savefig()方法保存图片文件

    # author:mlnt
    # createdate:2022/8/17
    import matplotlib
    import matplotlib.pyplot as plt
    
    # 设置字体为微软雅黑,解决中文显示问题
    matplotlib.rc("font", family='Microsoft YaHei')
    # 1.准备数据
    gold_medal = [15, 5, 16, 16, 28, 32, 51, 38, 26, 38]
    silver_medal = [8, 11, 22, 22, 16, 17, 21, 27, 18, 32]
    bronze_medal = [9, 12, 16, 12, 15, 14, 28, 23, 26, 18]
    
    # 索引列表
    year = [1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2021]
    
    
    """
    设置刻度:
    - xticks():设置x轴刻度
    - yticks():设置y轴刻度
    """
    # 设置x轴刻度
    plt.xticks(year)
    
    # 设置线条样式
    line_gold, = plt.plot(year, gold_medal, '-*', label='gold_medal')
    line_silver, = plt.plot(year, silver_medal, '-o', label='silver_medal')
    line_bronze, = plt.plot(year, bronze_medal, '-^', label='bronze_medal')
    
    # 设置图例
    # bbox_to_anchor()设置锚点,即图例位置
    # 在图表内,左下角位置为(0,0),右上角位置为(1,1)
    plt.legend(handles=[line_gold, line_silver, line_bronze], loc='best', bbox_to_anchor=(1, 1))
    
    # 设置在图表与Figure 1之间留白
    # h_pad/w_pad分别设置高度/宽度的留白
    plt.tight_layout(pad=2)
    
    
    # 设置标题及字体大小
    plt.title('中国历届奥运会奖牌情况', fontsize=20)
    plt.xlabel('年份', fontsize=14)
    plt.ylabel('数量/枚', fontsize=14)
    # 设置坐标轴刻度
    plt.tick_params(axis='both', labelsize=12, color='red')
    
    # 保存图片文件,使用savefig()方法保存图片文件,需放在show()的前面,表示先存储再显示图表
    plt.savefig('medal_chart.jpg', bbox_inches='tight')  # bbox_inches='tight'将图表的多余空间删除
    
    # 显示图表
    plt.show()
    

    效果:
    Python 绘制数据图表_第8张图片

2. 绘制散点图

2.1 基本散点图的绘制

  • 绘制一个点
"""
scatter(x, y, s, c)
s: 绘图点的大小
c:颜色
"""
import matplotlib.pyplot as plt

# 在坐标轴(5,5)绘制一个点
plt.scatter(5, 5)
plt.show()

效果:
Python 绘制数据图表_第9张图片

  • 绘制系列点

    # author:mlnt
    # createdate:2022/8/17
    """
    scatter(x, y, s, c)
    s: 绘图点的大小
    c:颜色
    """
    import matplotlib.pyplot as plt
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签
    plt.rcParams['axes.unicode_minus'] = False
    
    medal = [32, 28, 54, 50, 59, 63, 100, 88, 70, 88]
    # 索引列表
    year = [1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2021]
    
    # 设置x轴刻度
    plt.xticks(year)
    
    plt.scatter(x=year, y=medal, s=20, c='green')
    
    # 设置标题及字体大小
    plt.title('中国历届奥运会奖牌情况', fontsize=20)
    plt.xlabel('年份', fontsize=14)
    plt.ylabel('数量/枚', fontsize=14)
    # 设置坐标轴刻度
    plt.tick_params(axis='both', labelsize=12, color='red')
    plt.show()
    

    效果:
    Python 绘制数据图表_第10张图片

2.2 设置绘制区间

**axis()**设置绘图区间:

  • axis([xmin, xmax, ymin, ymax])
    • xmin/xmax:x轴的最小/最大区间
    • ymin/ymxa:y轴的最小/最大区间
# author:mlnt
# createdate:2022/8/17
"""
axis()设置绘图区间:
axis([xmin, xmax, ymin, ymax])
xmin/xmax:x轴的最小/最大区间
ymin/ymxa:y轴的最小/最大区间
"""

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

x = [i for i in range(1, 101)]
y = [i**2 for i in x]

# 设置绘图区间
plt.axis([0, 100, 0, 10000])
plt.scatter(x=x, y=y, s=20, c='green')

# 设置标题及字体大小
plt.title('1-100的平方', fontsize=20)
plt.xlabel('数值', fontsize=14)
plt.ylabel('平方值', fontsize=14)
# 设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red')
plt.show()

效果:
Python 绘制数据图表_第11张图片

2.3 绘制波形

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 500)
# 绘制sin()和cos()的波形变化
y1 = np.sin(x)
y2 = np.cos(x)
plt.scatter(x, y1, color=(0.5, 0.8, 0.6))
plt.scatter(x, y2)
plt.show()

效果:
Python 绘制数据图表_第12张图片

2.4 创建不等宽的散点图

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 5, 500)
y = 1 - 0.5*np.abs(x-2)
lwidths = (1+x)**2
plt.scatter(x=x, y=y, s=lwidths, color=(0.6, 0.8, 0.9))
plt.show()

效果:
Python 绘制数据图表_第13张图片

2.5 色彩映射

import matplotlib.pyplot as plt
import numpy as np


x = np.arange(100)
plt.scatter(x=x, y=x, c=x, cmap='rainbow')
plt.show()

效果:
Python 绘制数据图表_第14张图片

2.6 利用随机数绘制散点图

import matplotlib.pyplot as plt
import numpy as np

while True:
    x = np.random.random(100)
    y = np.random.random(100)
    t = x
    plt.scatter(x, y, s=100, c=t, cmap='brg')
    plt.show()
    is_exit = input('是否继续?(y/n)')
    if is_exit.upper() == 'N':
        break

Python 绘制数据图表_第15张图片

2.7 利用随机数实现位置的移动

# author:mlnt
# createdate:2022/8/17
import random

import matplotlib.pyplot as plt


def loc(index):
    """处理坐标的移动"""
    x_mov = random.choice([-3, 3])
    xloc = x[index - 1] + x_mov
    y_mov = random.choice([-5, -1, 1, 5])
    yloc = y[index - 1] + y_mov
    x.append(xloc)
    y.append(yloc)


num = 8000
x = [0]
y = [0]

while True:
    for i in range(1, num):
        loc(i)

    t = x
    plt.scatter(x, y, s=2, c=t, cmap='brg')
    # plt.axes().get_xaxis().set_visible(False)  # 隐藏y坐标
    # plt.axes().get_yaxis().set_visible(False)  # 隐藏y坐标
    # 隐藏坐标轴。
    plt.axis('off')
    plt.savefig('image.png', bbox_inches='tight', pad_inches=0)
    plt.show()
    is_exit = input('是否继续?(y/n)')
    if is_exit.upper() == 'N':
        break
    else:
        x[0] = x[num - 1]
        y[0] = y[num - 1]
        del x[1:]
        del y[1:]

Python 绘制数据图表_第16张图片

3. 绘制多个图表

3.1 一个程序绘制多个图表

# author:mlnt
# createdate:2022/8/17
import matplotlib.pyplot as plt

# 1.准备数据
data1 = [1, 4, 9, 16, 25, 36, 49, 64, 81]
data2 = [1, 3, 5, 8, 13, 21, 34, 55, 89]

# 索引列表
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]


# 创建图表1
plt.figure(1)
# 画线plot()
plt.plot(seq, data1, '-*')

# 创建图表2
plt.figure(2)
plt.plot(seq, data2, '-o')
# 设置标题及字体大小
plt.title(label='Test Chart 2', fontsize=18)
plt.xlabel(xlabel='x-value', fontsize=14)
plt.ylabel(ylabel='y-value', fontsize=14)

# 5.设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red', labelcolor='green')

# 显示绘制的图形
plt.show()

效果:
Python 绘制数据图表_第17张图片

3.2 含有子表的图表

subplot(x1, x2, x3)

  • x1: 上下(垂直)方向绘制图表数
  • x2:左右(水平)方向绘制图表数
  • x3:表示这是第几张
  • 一个Figure内绘制上下子图

    # author:mlnt
    # createdate:2022/8/17
    """
    subplot(x1, x2, x3)
    x1: 上下(垂直)方向绘制图表数
    x2:左右(水平)方向绘制图表数
    x3:表示这是第几张
    """
    import matplotlib.pyplot as plt
    
    # 1.准备数据
    data1 = [1, 4, 9, 16, 25, 36, 49, 64, 81]
    data2 = [1, 3, 5, 8, 13, 21, 34, 55, 89]
    
    # 索引列表
    seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    # 在一个Figure内绘制上下子图
    plt.subplot(2, 1, 1)
    # 画线plot()
    plt.plot(seq, data1, '-*')
    
    plt.subplot(2, 1, 2)
    plt.plot(seq, data2, '-o')
    # 设置标题及字体大小
    plt.xlabel(xlabel='x-value', fontsize=14)
    plt.ylabel(ylabel='y-value', fontsize=14)
    
    # 设置坐标轴刻度
    plt.tick_params(axis='both', labelsize=12, color='red', labelcolor='green')
    
    # 显示绘制的图形
    plt.show()
    

    效果:
    Python 绘制数据图表_第18张图片

  • 一个Figure内绘制左右子图

    # author:mlnt
    # createdate:2022/8/17
    """
    subplot(x1, x2, x3)
    x1: 上下(垂直)方向绘制图表数
    x2:左右(水平)方向绘制图表数
    x3:表示这是第几张
    """
    import matplotlib.pyplot as plt
    
    # 1.准备数据
    data1 = [1, 4, 9, 16, 25, 36, 49, 64, 81]
    data2 = [1, 3, 5, 8, 13, 21, 34, 55, 89]
    
    # 索引列表
    seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    # 在一个Figure内绘制上下子图
    plt.subplot(2, 1, 1)
    # 画线plot()
    plt.plot(seq, data1, '-*')
    
    plt.subplot(2, 1, 2)
    plt.plot(seq, data2, '-o')
    # 设置标题及字体大小
    plt.xlabel(xlabel='x-value', fontsize=14)
    plt.ylabel(ylabel='y-value', fontsize=14)
    
    # 设置坐标轴刻度
    plt.tick_params(axis='both', labelsize=12, color='red', labelcolor='green')
    
    # 显示绘制的图形
    plt.show()
    

    效果:
    Python 绘制数据图表_第19张图片

4. 绘制直方图

# author:mlnt
# createdate:2022/8/17
"""
bar(x, height, width)
x: 序列,x轴位置
height:序列数值大小
width:直方图的宽度
"""
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签
plt.rcParams['axes.unicode_minus'] = False

medal = [32, 28, 54, 50, 59, 63, 100, 88, 70, 88]
x = np.arange(len(medal))
# 索引列表
year = [1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2021]

plt.bar(x, medal, width=0.5)

# 设置标题及字体大小
plt.title('中国历届奥运会奖牌情况', fontsize=20)
plt.xlabel('年份', fontsize=14)
plt.ylabel('数量/枚', fontsize=14)
plt.xticks(x, year)
# 设置坐标轴刻度
plt.tick_params(axis='both', labelsize=12, color='red')
plt.show()

效果:
Python 绘制数据图表_第20张图片

# author:mlnt
# createdate:2022/8/17
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 1.准备数据
labels = [1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2021]
gold_medal = [15, 5, 16, 16, 28, 32, 51, 38, 26, 38]
silver_medal = [8, 11, 22, 22, 16, 17, 21, 27, 18, 32]
bronze_medal = [9, 12, 16, 12, 15, 14, 28, 23, 26, 18]

x = np.arange(len(labels))  # x轴位置
width = 0.3  # 直方图的宽度

fig, ax = plt.subplots()
rects1 = ax.bar(x - width, gold_medal, width, label='gold_medal')
rects2 = ax.bar(x, silver_medal, width, label='silver_medal')
rects3 = ax.bar(x + width, bronze_medal, width, label='bronze_medal')

# 设置标题及字体大小
ax.set_xlabel('年份', fontsize=14)
ax.set_ylabel('数量/枚', fontsize=14)
ax.set_title('中国历届奥运会奖牌情况', fontsize=20)
ax.set_xticks(x, labels)
# 设置图例
ax.legend()

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.bar_label(rects3, padding=3)

fig.tight_layout()

plt.show()

效果:
Python 绘制数据图表_第21张图片

5. 使用CSV文件绘制图表

# author:mlnt
# createdate:2022/8/17
import csv

import matplotlib
import matplotlib.pyplot as plt

matplotlib.rc("font", family='Microsoft YaHei')

filename = 'score.csv'

with open(file=filename) as csvFile:    # 打开csv文件
    csvReader = csv.reader(csvFile)    # 创建reader对象
    headerRow = next(csvReader)   # 读取文件下一行
    print(headerRow)  # ['学号', '姓名', '语文', '数学', '英语', '物理', '化学', '生物']
    # 设置空列表
    names, Chinese, Math, English, Physics, Chemistry, Biology = [], [], [], [], [], [], []
    for row in csvReader:
        # 将数据添加到列表
        names.append(row[1])
        Chinese.append(int(row[2]))
        Math.append(int(row[3]))
        English.append(int(row[4]))
        Physics.append(int(row[5]))
        Chemistry.append(int(row[6]))
        Biology.append(int(row[7]))
    print(f'语文:{Chinese}')
    print(f'数学:{Math}')
    print(f'英语:{English}')
    print(f'物理:{Physics}')
    print(f'化学:{Chemistry}')
    print(f'生物:{Biology}')

# 绘制语文成绩
# 设置绘图区大小
fig = plt.figure(dpi=80, figsize=(12, 8))
# 设置线条样式
line_Chinese, = plt.plot(names, Chinese, '-*', label='Chinese')
line_Math, = plt.plot(names, Math, '-o', label='Math')
line_English, = plt.plot(names, English, '-p', label='English')
line_Physics, = plt.plot(names, Physics, '-s', label='Physics')
line_Chemistry, = plt.plot(names, Chemistry, '-v', label='Chemistry')
line_Biology, = plt.plot(names, Biology, '-^', label='Biology')
# 设置图例
plt.legend(handles=[line_Chinese, line_Math, line_English, line_Physics, line_Chemistry, line_Biology], loc='best')
# 旋转
fig.autofmt_xdate(rotation=60)
plt.title('成绩分析', fontsize=20)
plt.xlabel('学员', fontsize=14)
plt.ylabel('分数', fontsize=14)
plt.tick_params(axis='both', labelsize=12, color='red')
plt.show()

score.csv:
Python 绘制数据图表_第22张图片

效果:
Python 绘制数据图表_第23张图片

# author:mlnt
# createdate:2022/8/17
import csv
from datetime import datetime

import matplotlib
import matplotlib.pyplot as plt

matplotlib.rc("font", family='Microsoft YaHei')

filename = 'temperature.csv'

with open(file=filename) as csvFile:    # 打开csv文件
    csvReader = csv.reader(csvFile)    # 创建reader对象
    headerRow = next(csvReader)   # 读取文件下一行
    # print(headerRow)
    # 设置空列表
    dates, lowTemps, highTemps, averageTemps = [], [], [], []
    for row in csvReader:
        try:
            # 将日期字符串转成对象
            currentDate = datetime.strptime(row[0], '%Y/%m/%d')
            # 设置最低温度
            # 需要转换成数字类型,y轴才能进行排序
            lowTemp = float(row[1])
            # 设置最高温度
            highTemp = float(row[2])
            # 设置平均温度
            averageTemp = float(row[3])
        except Exception as e:
            print('有缺值', e)
        else:
            # 将数据添加到列表
            dates.append(currentDate)
            lowTemps.append(lowTemp)
            highTemps.append(highTemp)
            averageTemps.append(averageTemp)
    print(f'最低温度:{lowTemps}')
    print(f'最高温度:{highTemps}')
    print(f'平均温度:{averageTemps}')


# # 设置绘图区大小
fig = plt.figure(dpi=80, figsize=(12, 8))
# 设置线条样式
line_highTemps, = plt.plot(dates, highTemps, '-*', label='highTemps')
line_lowTemps, = plt.plot(dates, lowTemps, '-o', label='lowTemps')
line_averageTemps, = plt.plot(dates, averageTemps, '-p', label='averageTemps')
# 设置图例
plt.legend(handles=[line_lowTemps, line_averageTemps, line_highTemps], loc='best')
# 旋转
fig.autofmt_xdate(rotation=60)
plt.title('Weather Report', fontsize=20)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Temperature (C)', fontsize=14)
plt.tick_params(axis='both', labelsize=12, color='red')
plt.show()

temperature.csv:
Python 绘制数据图表_第24张图片
效果:
Python 绘制数据图表_第25张图片


参考:

  • 官网:http://matplotlib.org
  • 官方文档:https://matplotlib.org/stable/index.html
  • 色彩映射:http://matplotlib.org/examples/color/colormaps_reference.html
  • https://blog.csdn.net/weixin_46233323/article/details/108038706
  • https://blog.csdn.net/weixin_43838785/article/details/104515455
  • https://blog.csdn.net/weixin_41783077/article/details/110734759
  • https://www.pudn.com/news/62623526dfdd9a1c0c529522.html
  • https://www.yzlfxy.com/jiaocheng/python/430158.html
  • https://www.zhihu.com/question/506015285

你可能感兴趣的:(学习笔记,Python,python,matplotlib,图表)