- 《多设备协同训练:HarmonyOS联邦学习驱动Unity游戏AI进化》
爱学习的小齐哥哥
HarmonyOS5Unity游戏HarmonyOS5unity游戏引擎Unity游戏
随着游戏产业的智能化升级,游戏AI正从传统的规则驱动向数据驱动的“自进化”模式转型。然而,传统游戏AI训练面临数据孤岛、计算资源受限、隐私安全风险三大核心挑战:单设备训练难以处理复杂场景的海量数据,集中式训练需上传用户行为数据(侵犯隐私),且高性能计算依赖云端或专用硬件(成本高、延迟大)。在此背景下,HarmonyOS联邦学习与多设备协同训练的融合,为Unity游戏AI的智能化进化提供了突破性解决
- AI人工智能加持,联邦学习医疗数据共享方案全解析
AI学长带你学AI
CS人工智能网络ai
AI人工智能加持,联邦学习医疗数据共享方案全解析关键词:联邦学习、医疗数据共享、隐私保护、人工智能、多方安全计算摘要:医疗数据是医学研究和临床决策的“黄金资源”,但患者隐私保护与数据孤岛问题却像两道高墙,阻碍着医疗AI的发展。本文将以“联邦学习”这一AI核心技术为钥匙,带您深入理解如何在不泄露原始数据的前提下,实现跨医院、跨机构的医疗数据共享与联合建模。我们将从生活场景出发,用“厨师合作研发新菜”
- 深度学习框架与联邦学习:探究未来的AI发展趋势=======================摘要:本文将深入探讨深度学习框架与联邦学习的融合,分析其在现代AI领域的应用和发展趋势。我们将介绍深度学习框
深度学习框架与联邦学习:探究未来的AI发展趋势摘要:本文将深入探讨深度学习框架与联邦学习的融合,分析其在现代AI领域的应用和发展趋势。我们将介绍深度学习框架的基本原理、联邦学习的概念及其优势,并结合实际案例探讨二者的结合如何推动AI技术的创新与发展。一、深度学习框架:AI的基石深度学习框架是构建和训练深度学习模型的重要工具。它为开发者提供了便捷的工具和库,使得构建复杂的神经网络模型变得更加简单高效
- 同态加密类型详解:部分同态加密,全同态加密
胡乱编胡乱赢
同态加密区块链算法部分同态全同态
一、部分同态加密(PHE)仅支持单一运算(加法或乘法),效率较高,已实用化。乘法同态算法:RSA:基于大数分解问题,满足E(m1)⋅E(m2)=E(m1⋅m2),适用于安全投票和数字签名。ElGamal:基于离散对数问题,支持乘法同态,常用于区块链隐私保护。加法同态算法:Paillier:基于合数剩余类问题,满足E(m1)⋅E(m2)=E(m1+m2),广泛用于联邦学习中的梯度聚合(如FATE框架
- 边缘计算算法与自动驾驶安全优化实践
智能计算研究中心
其他
内容概要在自动驾驶系统的安全优化进程中,边缘计算算法通过分布式算力部署与实时数据处理能力,为车辆决策层构建了低时延、高容错的技术底座。本文系统性分析联邦学习与生成对抗网络(GAN)的融合机制,在保护数据隐私的同时提升多节点模型的动态适应能力,并通过可解释性算法对决策逻辑进行可视化解析,增强系统透明度。针对复杂行车场景,数据预处理与特征工程的双向协同显著优化了障碍物识别与路径规划的鲁棒性,结合F1值
- 鹰盾视频的AI行为检测是怎样的风控?
加油搞钱加油搞钱
人工智能音视频
引言在数字内容生态与安全防护交织的复杂环境下,视频风控已成为保障平台合规运营、用户信息安全的核心防线。传统基于规则匹配与简单统计的风控手段,在面对多样化、隐蔽化的违规行为时逐渐力不从心。鹰盾视频构建的AI行为检测风控体系,通过深度融合多模态分析、强化学习、联邦学习等前沿技术,打造了从数据感知、智能研判到动态响应的全链条风控闭环。本文将从技术架构、核心算法、工程实践及未来演进等维度,深入解析其AI行
- 联邦学习:用隐私保护助力CIFAR10建模
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
联邦学习:用隐私保护助力CIFAR-10建模作者:禅与计算机程序设计艺术1.背景介绍1.1CIFAR-10数据集概述CIFAR-10数据集是一个广泛用于图像分类任务的基准数据集。它包含60,000张32x32彩色图像,分为10个类别,每个类别有6,000张图像。这些类别包括:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10数据集被广泛应用于图像分类算法的评估和比较。1.2传统机器学
- 基于Dirichlet分布的联邦学习数据分配
黑马算法创新
人工智能机器学习联邦学习异构联邦学习异构数据隐私保护
基于Dirichlet分布的联邦学习数据分配。其目标是将数据按照不均衡的方式分配到不同的客户端,模拟真实世界中客户端数据不均匀的情况。下面详细解释这段逻辑:标签排序和数据组织:首先,代码对数据集中的标签进行排序(labels_sorted)。这些标签代表着数据的类别。然后,通过将标签和相应的数据索引(即数据点的位置)配对,形成了一个名为class_by_labels的列表,每个元素是一个元组,其中
- 大模型训练新范式:隐私增强联邦学习架构与工程实践
尘烬海
架构rustwasmphp开发语言安全
一、传统联邦学习为何无法满足大模型隐私需求当前主流联邦学习框架如FedAvg在面对大模型时存在显著短板:python#标准FedAvg参数聚合伪代码暴露关键漏洞global_model=initialize_model()forroundinrange(total_rounds):client_updates=[]forclientinselected_clients:#本地训练梯度ΔW可被用于反
- 企业级大数据隐私保护:架构设计与实现方案
AI天才研究院
计算AI大模型应用入门实战与进阶AIAgent应用开发大数据ai
企业级大数据隐私保护:架构设计与实现方案关键词:大数据隐私保护、隐私计算、联邦学习、差分隐私、安全多方计算、数据合规、去标识化摘要:本文系统解析企业级大数据隐私保护的核心技术体系,从架构设计到具体实现方案展开深度探讨。通过分层架构设计覆盖数据全生命周期,结合差分隐私、联邦学习、安全多方计算等前沿技术,阐述数据收集、存储、处理、共享各环节的隐私保护机制。配套完整的数学模型推导、Python代码实现和
- 如何用数字人实现品效合一的传播
井云智能矩阵系统
人工智能
——从量子化建模到联邦学习的技术革命与商业实践一、行业痛点:传统营销的“三重割裂”2025年数据显示,78%的企业因营销效率低下错失市场机遇(快消品牌年损超500万元),核心矛盾聚焦于:品效割裂:品牌广告CTR<0.5%,效果广告复购率不足30%(MCN机构实测)渠道割裂:跨平台数据孤岛导致用户旅程断裂,转化漏斗流失率>65%人效割裂:真人主播日播极限4小时,人力成本占比超60%而如今,基于数字人
- 联邦学习架构深度分析:支持多家医院协作训练AI模型方案分析
Allen_Lyb
数智化医院2025架构人工智能
引言随着人工智能技术在医疗领域的广泛应用,医疗机构面临着如何在保护患者隐私的同时,高效利用分散在各医疗机构的医疗数据进行模型训练的挑战。传统的集中式数据共享方法不仅面临隐私泄露风险,还涉及复杂的法律合规问题。在这一背景下,"数据不动模型动"的联邦学习架构应运而生,为医疗机构提供了在不共享原始数据的前提下协同训练AI模型的新范式。联邦学习(FederatedLearning)是一种分布式机器学习范式
- **深度学习框架与生成对抗网络:探索前沿技术的融合之美**摘要:本文将深入探讨深度学习框架在生成对抗网络(GANs)中的应用,分析大模型训练的实践,并展望联邦学习在未来技术趋势中的位置。我们将通过实例
2401_89451588
深度学习生成对抗网络人工智能python
深度学习框架与生成对抗网络:探索前沿技术的融合之美摘要:本文将深入探讨深度学习框架在生成对抗网络(GANs)中的应用,分析大模型训练的实践,并展望联邦学习在未来技术趋势中的位置。我们将通过实例和代码片段展示相关技术细节,帮助读者更好地理解这些前沿技术。一、引言随着人工智能(AI)技术的飞速发展,深度学习框架作为实现AI的重要工具,已经成为研究的热点。生成对抗网络(GANs)作为深度学习领域的一个重
- 【论文阅读】Federated Large Language Model : A Position Paper
只说人话绝不装逼
联邦大模型论文阅读语言模型人工智能
https://arxiv.org/pdf/2307.08925.pdf这篇文章算是一篇positionpaper,阐述了作者对联邦大模型的理解与看大。初学者可以当一篇综述来看。文章思想很朴素,也很容易理解,基本就是有大模型基础和联邦学习基础的人都能想到或是理解的。联邦大模型的两种学习方式两种非常直观的方法:一种是从头训练,一种是利用私有数据集进行微调。优劣也非常直观:第一种方法允许特定任务的模型
- 基于大模型预测视神经脊髓炎的技术方案
LCG元
大模型医疗研究-技术方向技术方案人工智能
目录一、摘要二、系统架构设计1.整体架构图(Mermaid流程图)2.子系统划分三、核心算法实现1.术前风险预测模型(伪代码示例)2.术中实时监测流程图四、系统集成方案1.硬件部署拓扑图2.关键API定义五、硬件集成方案1.计算资源规划2.安全通信协议六、技术验证方法1.模型验证流程2.对比实验设计七、附录1.联邦学习协调算法2.系统部署检查清单一、摘要本研究提出一种基于多模态大模型的视神经脊髓炎
- 自动化学习与边缘计算融合驱动语音识别模型优化新路径
智能计算研究中心
其他
内容概要当前,自动化机器学习与边缘计算技术的交叉融合正在重塑语音识别模型的研发范式。这一趋势的核心在于通过算法优化与算力下沉的双重路径,解决传统云端集中式训练面临的效率瓶颈与隐私风险。以联邦学习框架为基础的数据协同机制,使得分散在边缘设备中的语音样本能够在不共享原始数据的前提下参与模型迭代,有效平衡了数据利用与隐私保护之间的矛盾。与此同时,超参数自动化搜索技术通过贝叶斯优化、进化算法等策略,显著降
- 大白话解释联邦学习
frostmelody
深度学习小知识点机器学习小知识点人工智能联邦学习
数据孤岛:为何发生?有何危害?如何解决?什么是数据孤岛?企业或组织内部,数据因存储分散、标准不一、系统或部门壁垒,导致数据像一座座孤立的岛屿,无法自由流通与整合,其潜在价值难以被充分挖掘。例如,财务部和销售部各自使用独立数据库,数据无法自动交互,需手动导出导入(物理性孤岛)相同数据在不同部门被赋予不同含义。例如,销售部的“客户”指已成交用户,而市场部的“客户”包含潜在用户,导致跨部门协作时需反复沟
- 国际应用人工智能协会(IAAAI)的技术生态构建与全球实践
feng99520
人工智能重构AAIAIAAAIAI
一、组织架构与技术治理模型1.1跨学科协同机制IAAAI构建了独特的"三角协作框架"(TriangularCollaborationFramework),将学术界、产业界和政策制定者的需求整合为可编程的协作协议。其学术委员会与全球120个研究机构建立了动态知识图谱系统,通过语义网技术实时追踪联邦学习、边缘计算等18个技术领域的最新突破。例如,在2022年发布的联邦医疗成像协作平台(FMICP)中,
- 联邦学习图像分类实战:基于FATE与PyTorch的隐私保护机器学习系统构建指南
Tech Synapse
机器学习分类pytorch
引言在数据孤岛与隐私保护需求并存的今天,联邦学习(FederatedLearning)作为分布式机器学习范式,为医疗影像分析、金融风控、智能交通等领域提供了创新解决方案。本文将基于FATE框架与PyTorch深度学习框架,详细阐述如何构建一个支持多方协作的联邦学习图像分类平台,覆盖环境配置、数据分片、模型训练、隐私保护效果评估等全流程,并提供可直接运行的完整代码。一、技术架构与核心组件1.1联邦学
- MCP协议:大模型与外部工具交互的标准化创新方案
未来创世纪
AIGC人工智能
MCP协议:大模型与外部工具交互的标准化创新方案摘要:本文深入剖析MCP(ModelContextProtocol)协议,作为大模型与外部工具交互的标准化方案,其通过客户端-服务端架构实现AI能力与数据/工具的深度集成。文章从协议定位、架构设计和组件职责等维度展开,阐述其打破生态孤岛、降低开发复杂性、提升人机交互效率等核心价值,并探讨多模态扩展、联邦学习等未来演进方向,为AI系统构建提供重要参考。
- AI产品设计:如何平衡上下文理解与用户隐私?
AI大模型应用之禅
人工智能ai
AI产品设计:如何平衡上下文理解与用户隐私?关键词:AI产品设计、上下文理解、用户隐私、数据安全、隐私保护、差分隐私、联邦学习摘要:本文探讨了在AI产品设计中如何平衡上下文理解能力与用户隐私保护这一关键问题。我们将从基础概念出发,分析两者之间的冲突与协同关系,介绍当前主流的隐私保护技术,并通过实际案例展示如何在产品设计中实现这一平衡。文章最后展望了未来发展趋势,为AI产品设计师和开发者提供实用的指
- 联邦学习真香警告:跨机构医疗数据协作中的梯度投毒攻防
梦玄网络安全
golang爬虫算法python服务器
联邦学习(FederatedLearning,FL)作为医疗数据协作的核心技术,允许医院在不共享原始数据的前提下联合训练AI模型。然而,其分布式特性也使其成为梯度投毒攻击(GradientPoisoningAttack)的温床。本文将深度解析这一攻防战的技术细节与实战方案。一、为什么医疗领域需要联邦学习?1.1医疗数据协作的困境•数据孤岛:医院A有MRI影像,医院B有病理切片,但数据无法直接共享(
- 智能算法核心技术:联邦学习与量子计算应用解析
智能计算研究中心
其他
内容概要本文聚焦智能算法技术体系的跨场景应用与前沿突破,以联邦学习与量子计算为核心架构展开系统性分析。在金融风控领域,联邦学习通过分布式模型训练机制,在保障数据隐私的前提下实现多机构联合建模,结合可解释性算法提升风险预测透明度;量子算法则突破传统医疗影像分析的计算效率瓶颈,通过量子态叠加特性加速高分辨率图像的特征提取。自动驾驶场景中,计算机视觉算法与边缘计算框架的深度耦合,实现了低延迟环境感知与决
- 【研究方向】联邦|自然语言
拾贰_Python
开发语言数据结构时序数据库智慧城市机器翻译视频编解码视觉检测
联邦学习FederatedLearning,FL分布式学习方案。通过多个参与方(client)联邦计算FederatedComputing联邦计算(FederatedLearning)是一种分布式机器学习方法,旨在解决数据隐私保护与数据孤岛问题。图联邦GraphNeuralNetworks,GNNs图联邦都是基于大量的图数据进行训练的,然而在许多的现实场景中,图数据通常在多个数据所在者处,(例如医
- 联邦学习在跨境API中的应用:Temu多国用户画像融合策略
lovelin+vI7809804594
大数据反向海淘微信爬虫API
在全球电商市场蓬勃发展的当下,跨境电商平台面临着诸多挑战,其中之一便是如何精准把握不同国家和地区用户的特征与需求。Temu作为迅速崛起的跨境电商平台,在全球范围内拥有大量用户,但不同国家的用户具有不同的文化背景、消费习惯和偏好。传统的集中式数据处理方式在跨境场景下存在数据隐私、安全合规等问题,难以有效融合多国用户数据以构建全面的用户画像。联邦学习作为一种新兴的分布式机器学习范式,为解决这一问题提供
- 【前沿聚焦】机器学习的未来版图:从自动化到隐私保护的技术突破
机器学习自动化
摘要本文聚焦机器学习领域的前沿技术趋势,包括自动化机器学习(AutoML)、多模态学习和联邦学习等热门方向。文章将详细解析这些技术的基本原理、应用场景及潜在突破点,并通过可运行的代码示例进行实践,帮助开发者理解这些技术并规划未来学习路径。引言近年来,机器学习技术取得了显著进步。然而,伴随技术的发展,新的问题和需求不断涌现,例如模型自动化、多模态数据处理和隐私保护。本文将围绕这些挑战,探讨三大前沿技
- 【机器学习】揭秘隐私保护机器学习:差分隐私与联邦学习如何守护你的数据?
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能深度学习联邦学习差分隐私pythonpytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 算法安全优化与跨场景应用实践
智能计算研究中心
其他
内容概要《算法安全优化与跨场景应用实践》系统梳理了多模态算法在复杂场景下的协同优化路径。通过对比分析联邦学习、生成对抗网络(GAN)及量子算法的技术特性,本书构建了覆盖金融、医疗、交通等领域的跨行业解决方案框架。例如,联邦学习通过分布式模型训练机制,在保障数据隐私的前提下提升金融风控模型的泛化能力;而量子算法则借助并行计算优势,显著降低高频交易场景下的风险预测延迟。技术类别典型应用场景优化方向安全
- 第31篇:FedSA-LoRA(联邦学习+lora+个性化升级版)
还不秃顶的计科生
联邦学习人工智能
第一部分:要解决的问题第二部分:解决问题所提出的idea研究发现,A矩阵负责学习通用知识,而B矩阵则专注于捕捉客户端特定知识。这一发现基于对不同数据异质性水平下,客户端间A和B矩阵的相似性分析。第三部分:新方法效果任务:在自然语言理解(GLUE基准)和生成任务(GSM8K、CodeSearchNet)中测试。性能
- Web3.0与数据隐私计算的融合革命:重构数字社会信任基石
知识产权13937636601
计算机web3.0
Web3.0与隐私计算的交汇正在引发数据生产要素的范式革命。本文深入解析去中心化数字身份、零知识证明与联邦学习的技术融合路径,通过政务数据开放、医疗影像共享、金融反洗钱三大场景实践,揭示如何构建“数据可用不可见”的新型基础设施。研究提出跨链隐私计算中间件架构,在保障GDPR、CCPA等合规要求的同时,实现数据要素流转效率提升300%,为构建可信数据社会提供关键技术支撑。一、Web3.0时代的数据主
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&