YOLOX训练自己的数据集(头铁出来的超详细教程)

这里写自定义目录标题

  • 1.YOLOX环境搭建
    • 1.1新建一个conda环境
    • 1.2安装代码依赖的库文件
    • 1.3通过setup.py安装一些库文件
    • 1.4下载apex文件
    • 1.4下载pycocotools
  • 2.创建自己的数据集
    • 2.1创建VOC格式数据集
  • 3.训练
    • 3.1修改文件代码
    • 3.2开始训练
  • 3.测试
    • 3.1测试自己的训练结果
  • 3.预测结果
      • 参考(侵删)

1.YOLOX环境搭建

首先,搭建YOLOX所需要的环境。这里我使用Anaconda来搭建的。在搭建环境之前,先附上YOLOX的官方代码: 官方代码链接.

1.1新建一个conda环境

conda create -n yolox python=3.8
conda activate yolox   //进入环境

如果你想用原有的环境来搭建,也ok,直接激活你的环境。

1.2安装代码依赖的库文件

用到你下载好的官方文件,在命令行中

cd your/yolox-main/path
pip install -r requirements.txt

1.3通过setup.py安装一些库文件

python3 setup.py develop

1.4下载apex文件

apex下载链接.
下载好后cd到文件夹中并安装

cd path/to/your/apex
python3 setup.py install

安装成功后会显示
在这里插入图片描述

1.4下载pycocotools

pip3 install cython
pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

2.创建自己的数据集

2.1创建VOC格式数据集

yolox可以跑两种格式的数据集voc和coco,这里我用voc举例。
yolox的预训练模型 下载地址.我用yolox-s.pth举例
YOLOX训练自己的数据集(头铁出来的超详细教程)_第1张图片
这是目录格式要求,可以自己手动建立。

其中,annotation用于存放xml格式的标签文件,JPEGimage用于存放原始图片。ImageSets/Main下的两个文件可以根据代码建立。

# oding = utf-8
# -*- coding:utf-8 -*-
import os
import random

trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\Annotations'
txtsavepath = r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftest = open(r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\ImageSets\Main\test.txt', 'w')
ftrain = open(r'\YOLOX-main\datasets\VOCdevkit\VOC2007\ImageSets\Main\trainval.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftest.write(name)
    else:
        ftrain.write(name)

ftrain.close()
ftest.close()



运行此代码后会出现两个.txt文件。

3.训练

3.1修改文件代码

修改 yolox/data/dataloading.py

def get_yolox_datadir():
    """
    get dataset dir of YOLOX. If environment variable named `YOLOX_DATADIR` is set,
    this function will return value of the environment variable. Otherwise, use data
    """
    yolox_datadir = os.getenv("YOLOX_DATADIR", None)
    if yolox_datadir is None:
        import yolox

        yolox_path = os.path.dirname(os.path.dirname(yolox.__file__))
        
        //修改这里
        yolox_datadir = os.path.join(yolox_path, "datasets")
    
    return yolox_datadir

其次,修改exps/example/yolox_voc/yolox_voc_s.py

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 10 #修改类别数目
        self.depth = 0.33
        self.width = 0.50
        self.warmup_epochs = 1

然后,修改这里,这块复制就好了

        with wait_for_the_master(local_rank):
            dataset = VOCDetection(
                data_dir=os.path.join(get_yolox_datadir(), "VOCdevkit"),
                //修改这里
                image_sets=[('2007', 'trainval')],#, ('2012', 'trainval')
                img_size=self.input_size,
                preproc=TrainTransform(
                    max_labels=50,
                    flip_prob=self.flip_prob,
                    hsv_prob=self.hsv_prob),
                cache=cache_img,
            )

修改yolox/data/datasets/voc_classes.py为自己的类别。

VOC_CLASSES = (
    '1',
    '2',
    '3',
    '4',
    '5',
    '6',
    '7',
    '8',
    '9',
    '10',
)

最后,修改yolox/evaluators/voc_eval.py,添加root为annotation的绝对路径。

#修改yolox/evaluators/voc_eval.py,添加root为annotation的绝对路径。
root = r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\Annotations\\'
def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(root + filename)

3.2开始训练

超参数设置:

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 0 -b 4 --fp16  -c yolox_s.pth

YOLOX训练自己的数据集(头铁出来的超详细教程)_第2张图片

YOLOX训练自己的数据集(头铁出来的超详细教程)_第3张图片
如果训练中断,开启,resume

python3 tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 0 -b 64 -c <last_epoch_ckpt.pth的路径> --resume

3.测试

3.1测试自己的训练结果

修改yolox/data/datasets/下的init.py文件,添加:
from .voc_classes import VOC_CLASSES
YOLOX训练自己的数据集(头铁出来的超详细教程)_第4张图片

之后在toos/demo.py文件中将COCO_CLASSES全部修改为VOC_CLASSES
直接在此文件find下COCO_CLASSES然后全部修改为VOC_CLASSES就好了。
在这里插入图片描述

python tools/demo.py image -f exps/example/yolox_voc/yolox_voc_s.py -c weights/best_ckpt.pth --path assets/class01.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]

-c 代表训练好的权重,-path 代表你要预测的图片存放的文件夹,
若想进行视频预测,只需将下面的 image 更换为 video;
若想预测整个文件夹,将.jpg去掉,只留 --path assets/

3.预测结果

跑了300个epoch训练了两个类,一个是飞机一个是油罐,感觉精度在280个epoch的时候明显上升,但是最终的结果不如v5好,不知道是因为我将.txt转xml出错了还是果真效果就是不太行,这个我还没分析。上图:
YOLOX训练自己的数据集(头铁出来的超详细教程)_第5张图片
上图是yolox-s的效果,我人麻了……
YOLOX训练自己的数据集(头铁出来的超详细教程)_第6张图片
上图是yolov5-x的效果。。。

好了我继续trick了,感兴趣的小伙伴来一起交流
持续更新中……

参考(侵删)

文献1.
文献2.
文献3.
文献4.

你可能感兴趣的:(目标检测,python,神经网络,目标检测)