我们先认识一下SpringCloud的各个组件,然后知其所以然。
原理讲解前,先看一个最经典的业务场景,如开发一个电商网站,要实现支付订单的功能,流程如下:
如上,微服务的应用场景和核心竞争力:
Dubbo对标Spring Cloud微服务:
Spring Cloud实现思路:
Eureka
原理:主管服务注册与发现,也就是微服务的名称注册到Eureka,就可以通过Eureka找到微服务,而不需要修改服务调用的配置文件。
分析:Spring Cloud封装了Netflix公司开发的Eureka模块来实现服务的注册与发现,采用的c-s的设计架构,Eureka Server作为服务注册功能的服务器,他是服务注册中心。而系统的其他微服务,使用Eureka的客户端连接到Eureka Server并维持心跳。这样系统的维护人员可以通过Eureka Server来监控系统中的各个微服务是否正常运行。Spring Cloud的一些其他模块(比如Zuul)就可以通过Eureka Server来发现系统其他的微服务,并执行相关逻辑。
Eureka Server
Eureka Server提供服务注册服务,各个节点启动后,会在Eureka Server中进行注册, 这样Eureka Server中的服务注册表中将会存储所有可用服务节点的信息,服务节点的信息可以在界面中直观的看到。
Eureka Client
Eureka Client是一个Java客户端, 用于简化Eureka Server的交互,客户端同时也具备一个内置的、 使用轮询(round-robin)负载算法的负载均衡器。在应用启动后,将会向Eureka Server发送心跳(默认周期为30秒),以证明当前服务是可用状态。如果Eureka Server在一定的时间(默认90秒)未收到客户端的心跳,Eureka Server将会从服务注册表中把这个服务节点移除。
Eureka Server的自我保护机制
如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:
因此, Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像ZooKeeper那样使整个注册服务瘫痪。
Eureka和ZooKeeper
著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性)、A(可用性)和P(分区容错性)。由于分区容错性在是分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡。
ZooKeeper保证CP
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是ZooKeeper会出现这样一种情况,当Master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s,且选举期间整个ZooKeeper集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得ZooKeeper集群失去Master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。
Eureka保证AP
Eurek在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。
除此之外,Eureka还有一种自我保护机制,见上。
总结
Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像ZooKeeper那样使整个注册服务瘫痪。
Eureka作为单纯的服务注册中心来说要比ZooKeeper更加“专业”,因为注册服务更重要的是可用性,我们可以接受短期内达不到一致性的状况。
Ribbon和Feign
在微服务架构中,业务都会被拆分成一个独立的服务,服务与服务的通讯是基于HTTP RESTful的。Spring Cloud有两种服务调用方式,一种是Ribbon+RestTemplate,另一种是Feign。
概念
基于Netflix Ribbon用过轮询策略实现的一套客户端负载均衡的工具。
客户端负载均衡:负载均衡Zuul网关将一个请求发送给某一个服务的应用的时候,如果一个服务启动了多个实例,就会通过Ribbon来通过一定的负载均衡策略来发送给某一一个服务实例。Spring Cloud中的Ribbon,客户端会有一个服务器地址列表,在发送请求前通过负载均衡算法(如简单轮询,随机连接等)选择一个服务器,然后进行访问。
负载均衡
RestTemplate
传统情况下在Java代码里访问RESTful服务,一般使用Apache的HttpClient,不过此种方法使用起来太过繁琐。Spring提供了一种简单便捷的模板类来进行操作,这就是RestTemplate。
Feign是一个声明式http客户端。使用Feign能让编写http客户端更加简单,它的使用方法是定义一个接口,然后在上面添加注解,避免了调用目标微服务时,需要不断的解析/封装json数据的繁琐。Spring Cloud中Feign默认集成了Ribbon,并和Eureka结合,默认实现了负载均衡的效果。
Ribbon和Feign的区别
Feign目标使编写Java Http客户端变得更容易
在使用Ribbon+ RestTemplate时,Ribbon需要自己构建http请求,模拟http请求然后使用RestTemplate发送给其他服务,步骤相当繁琐。利用RestTemplate对http请求的封装处理,形成了-套模版化的调用方法。但是在实际开发中,由于对服务依赖的调用可能不止一处,往往一个接口会被多处调用,所以通常都会针对每个微服务自行封装一些客户端类来包装这些依赖服务的调用。所以,Feign在此基础上做了进一步封装,由他来帮助我们定义和实现依赖服务接口的定义。
在Feign的实现下,我们只需创建一个接口并使用注解的方式来配置它(以前是Dao接口上面标注Mapper注解,现在是一个微服务接口上面标注一个Feign注解即可), 即可完成对服务提供方的接口绑定,简化了使用Spring Cloud Ribbon时,自动封装服务调用客户端的开发量。
Feign集成了Ribbon
Ribbon通过轮询实现了客户端的负载均衡,而与Ribbon不同的是,Feign是一个声明式的Web服务客户端, 使得编写Web服务客户端变得非常容易,只需要创建一个接口, 然后在上面添加注解,像调用本地方法一样调用它就可以,而感觉不到是调用远程方法。SpringCloud中Feign默认集成了Ribbon,并和Eureka结合,默认实现了负载均衡的效果。
Ribbon和Nginx的区别
服务器端负载均衡Nginx
Nginx是客户端所有请求统一交给Nginx,由Nginx进行实现负载均衡请求转发,属于服务器端负载均衡。既请求由Nginx服务器端进行转发。客户端负载均衡Ribbon,Ribbon是从Eureka注册中心服务器端上获取服务注册信息列表,缓存到本地,然后在本地实现轮询负载均衡策略。既在客户端实现负载均衡。
应用场景的区别
Nginx适合于服务器端实现负载均衡,比如:Tomcat,Ribbon适合与在微服务中RPC远程调用实现本地服务负载均衡,比如:Dubbo、Spring Cloud中都是采用本地负载均衡。
Zuul
应用场景
假如当前有十几个微服务服务,订单,商品,用户等等,显然是客户端不需要和每个服务逐一打交道,这就需要有一个统一入口,它就是服务网关。API网关所有的客户端请求通过这个网关访问后台的服务。他可以使用一定的路由配置来判断某一个URL由哪个服务来处理。并从Eureka获取注册的服务来转发请求。
核心功能
Zuul包含了对请求的路由和过滤两个最主要的功能,是各种服务的统一入口,同时还会用来提供监控、授权、安全、调度等等。
路由功能:负责将外部请求转发到具体的微服务实例上,是实现外部访问统一入口的基础。
过滤器功能:则负责对请求的处理过程进行干预,是实现请求校验、服务聚合等功能的基础。
Zuul和Eureka进行整合:将Zuul自身注册为Eureka服务治理下的应用,同时从Eureka中获得其他微服务的消息,也即以后的访问微服务都是通过Zuul跳转后获得。
注意:Zuul服务最终还是会注册进Eureka,提供代理+路由+过滤三大功能。
核心原理
Zuul的核心是一系列的filters,其作用可以类比Servlet框架的Filter,或者AOP。
过滤器之间没有直接进行通信,而是通过Request Context(上下文)进行数据传递。
Zuul的过滤器是由Groovy写成,这些过滤器文件被放在Zuul Server上的特定目录下面,Zuul会定期轮询这些目录,修改过的过滤器会动态的加载到Zuul Server中以便过滤请求使用。
Zuul负载均衡:Zuul拦截对应的API前缀请求做转发,转发到对应的serverId上,在Eureka服务上同一个serverId可以对应多个服务,也就是说用同一个服务节点不同的端口注册两个实例,但是serverId是一样Zuul做转发的时候会结合eureka-server起到负载均衡的效果。
过滤器的种类:
Zuul和Nginx
Zuul虽然在性能上和Nginx没法比,但它也有它的优点。Zuul提供了认证鉴权,动态路由,监控,弹性,安全,负载均衡等边缘服务,在团队规模不大的情况下,没有专门负责路由开发时,使用Zuul当网关是一个快速上手的好方案。
Nginx和Zuul是可以配合使用的,发挥各自的优点,使用Nginx作为负载均衡实现高并发的请求转发,Zuul用作网关。
Zuul和Ribbon实现负载均衡
Zuul支持Ribbon和Hystrix,也能够实现客户端的负载均衡。我们的Feign不也是实现客户端的负载均衡和Hystrix的吗?既然Zuul已经能够实现了,那我们的Feign还有必要吗?
可以这样理解:
Zuul是对外暴露的唯一接口相当于路由的是controller的请求,而Ribbonhe和Fegin路由了service的请求。
Zuul做最外层请求的负载均衡,而Ribbon和Fegin做的是系统内部各个微服务的service的调用的负载均衡。
Hystrix
介绍
Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避兔的会调用失败,比如超时、异常等,Hystrix能够保证在一个依赖出问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。Hystrix的出现就是为了解决雪崩效应。
服务雪崩
多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩溃,所谓的”雪崩效应”。
服务熔断
熔断机制是应对雪崩效应的一种微服务链路保护机制。
当删除链路的某个微服务不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回”错误的响应信息。当检测到该节点微服务调用响应正常后恢复调用链路。在SpringCloud框架里熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败就会启动熔断机制。熔断机制的注解是@HystrixCommand。
服务降级
整体资源快不够了,忍痛将某些服务先关掉,待渡过难关,再开启回来。
Hystrix监控和断路器
我们只需要在服务接口上添加Hystrix标签,就可以实现对这个接口的监控和断路器功能。
Hystrix Dashboard监控面板,提供了一个界面,可以监控各个服务上的服务调用所消耗的时间等。
Hystrix Turbine监控聚合
使用Hystrix监控,我们需要打开每一个服务实例的监控信息来查看。而Turbine可以帮助我们把所有的服务实例的监控信息聚合到一个地方统查看。这样就不需要挨个打开一个个的页面一个个查看。
Zuul的安全机制
签名机制,为防止接口数据篡改和重复调用,增加接口参数校验机制,sig签名算法为MD5(appKey+appSecret+timestamp),appKey是分配给客户端的ID,appSecret是分配给客户端的密钥,timestamp为unix时间戳,请求的URL有效时间为15分钟。
Token机制,用户在登录之后会返回一个access_ token,客户端在访问需要登录之后才能访问的资源,需要在在Authorization头部使用Bearer模式新增token,如head(“Authorization”,” Bearer token”)。
Hystrix的设计原则
Config
介绍
Spring Cloud Config是一个解决分布式系统的配置管理方案。微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统 中会出现大量的服务。由于每个服务都需要必要的配置信息才能运行,所以一套集中式的、 动态的配置管理设施是必不可少的。Spring Cloud提供了ConfigServer来解决这个问题,我们每一个微服务自 己带着一个application.yml 上百个配置文件的管理。
应用场景
原理
角色
总结如下:
原作者:白羽毛
原文链接: Spring Cloud架构的各个组件的原理分析
原出处:头条号
侵删