同声传译:同声传译员被称为“21世纪第一大紧缺人才”。“同传的薪金是按照小时和分钟来算的,现在的价码是每小时4000元到8000元。”相关人士如是说。
“4年之后入驻中国和北京的外国大公司越来越多,这一行肯定会更吃香。”3G工程师:据计世资讯发布的相关研究报告称,估计国内3G人才缺口将达到50万人以上。
由于目前3G人才比较少,尤其是复合型人才奇缺,预计4年之后3G工程师的基本年薪会在15万元至20万元。
“网络媒体人才:目前,网络编辑的月薪一般都在5000元左右、中等职位的收入在8000元至10000元。“相信4年之后整个网络媒体的广告收入越来越多的时候,从业人员会有一个更好的回报。
”物流师:物流人才的需求量为600余万人。相关统计显示,目前物流从业人员当中拥有大学学历以上的仅占21%。许多物流部门的管理人员是半路出家,很少受过专业的培训。
据相关人士透露,对此类人才有需求的某知名企业在国内招聘的应届大学生目前的薪金是每月6000元到8000元,在一年之后还会有相当大的提升空间。
“现在一年就能挣个7万元至10万元,估计4年之后只会多不会少,因为能源越来越紧俏。”这是以后比较会吃香的行业,趁现在能学习,多学点这方面的,以后可能会好找工作!!加油喽!!
研究生阶段学习神经网络和就业有关系吗?研究生光学个神经网络就觉得足够了吗?你把这个东西看的太万能了爱发猫 www.aifamao.com。钞票都不是万能的,更何况神经网络。
现在学工科的读研不搞点数学不涉及点神经网络都不好意思说自己是研究生,不编程都不好意思说自己会电脑,不发几篇英文论文都不好意思说自己发过文章。找工作主要看你脑袋灵活不灵活,会不会说话,会不会吹自己。
还有和学校、性别有很大关系。那个不难学。
1、受众分析员《今日美国》(USAToday)新闻网的TheJournalNews开设受众分析员(AudienceAnalyst)岗位。
工作职责具体包括两方面:挖掘、记录和分析量化数据信息;提供信息分析和策划参考。2、参与编辑美国有线电视新闻网(CNN)开设参与编辑(EngagementEditor)岗位。
职责是确定能引发受众共鸣的新闻故事、发现最佳传播策略并向多个媒体平台推送。
3、应用技术创新引领员《今日美国》(USAToday)开设应用技术创新引领员(CreativeLeadofAppliedTechnologies)岗位。
主要从事虚拟现实项目的设计工作,和编辑团队合作开发一个受众浸入式新闻体验项目。
4、社交媒体和社区编辑社交媒体和社区编辑(SocialMediaandCommunityEditor)岗位,其需要24小时不间断把新文章、图片和视频发布到流行的社交媒体上,满足社交平台上的受众需求。
5、社会发现总监社会发现总监(DirectorofSocialDiscovery)岗位,其职责是率领团队评估这些受众上传的素材,发现现场目击者,挑选最好的用户生产内容并将其发展为热点新闻故事,在突发事件发生时及时采编新闻并进行评论。
6、移动项目经理《华尔街日报》(TheWallStreetJournal)开设移动项目经理(MobileProjectManager)岗位,职责在于协调并改进程序应用开发人员和编辑团队的日常合作。
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。
基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。
不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。
通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。
特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。
随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。
基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。
随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。
随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。
语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。问答系统问答系统分为开放领域的对话系统和特定领域的问答系统。
问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。
尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算四、人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。
人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。
传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。
人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。
自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。
根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。目前,计算机视觉技术发展迅速,已具备初步的产业规模。
未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。
注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。
从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。
目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。七、VR/AR虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。
结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。
用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。
获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。
总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。
人工智能就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。
机械制造人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。
研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。
人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。
研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。就业方向为:科学研究工程开发计算机方向软件工程应用数学电气自动化通信机械制造。
人工智能就业方向前景很好,现在正在产业升级,工业机器人和人工智能方面都会是强烈的热点,而且正好是在3~5年以后的时间。
难度,肯定高,要求你有创新的思维能力,高数中的微积分、数列等等必须得非常好,软件编程(基础的应用最广泛的语言:C/C++)必须得很好,微电子(数字电路、低频高频模拟电路、最主要的是嵌入式的编程能力)得学得很好,还要有一定的机械设计能力(空间思维能力很重要)。
这样的话,你就是人才,你就是中国未来5年以后急需的人工智能领域的人才。一门深入地钻研下去,你就是这个领域的专家甚至大师。但是!!!
如果你没有这些喜好和特长或者没能学好这些学科的话,现在做别的选择还来得及。