matlab实现神经网络算法,matlab神经网络训练函数

matlab实现神经网络算法,matlab神经网络训练函数_第1张图片

如何用matlab软件实现神经网络应用

给你一个实例,希望通过该例子对实现神经网络应用有一定的了解。

%x,y分别为输入和目标向量x=1:5;y=[639646642624652];%创建一个前馈网络net=newff(minmax(x),[20,1],{'tansig','purelin'});%仿真未经训练的网络net并画图y1=sim(net,x);plot(x,y1,':');%采用L-M优化算法net.trainFcn='trainlm';%设置训练算法net.trainParam.epochs=500;=10^(-6);%调用相应算法训练BP网络[net,tr,yy]=train(net,x,y);%对BP网络进行仿真y1=sim(net,x);%计算仿真误差E=y-y1;MSE=mse(E)holdon%绘制匹配结果曲线figure;plot(x,y1,'r*',x,y,'b--')执行结果。

谷歌人工智能写作项目:爱发猫

MATLAB中神经网络的实现,高分追加 50

MATLAB神经网络 50

matlab中神经网络怎么使用

用MATLAB建立bp神经网络模型,求高手,在线等

Matlab神经网络工具箱提供了一系列用于建立和训练bp神经网络模型的函数命令,很难一时讲全。下面仅以一个例子列举部分函数的部分用法。

更多的函数和用法请仔细查阅NeuralNetworkToolbox的帮助文档。例子:利用bp神经网络模型建立z=sin(x+y)的模型并检验效果%第1步。

随机生成200个采样点用于训练x=unifrnd(-5,5,1,200);y=unifrnd(-5,5,1,200);z=sin(x+y);%第2步。建立神经网络模型。

其中参数一是输入数据的范围,参数二是各层神经元数量,参数三是各层传递函数类型。

N=newff([-55;-55],[5,5,1],{'tansig','tansig','purelin'});%第3步。训练。这里用批训练函数train。也可用adapt函数进行增长训练。

N=train(N,[x;y],z);%第4步。检验训练成果。

[X,Y]=meshgrid(linspace(-5,5));Z=sim(N,[X(:),Y(:)]');figuremesh(X,Y,reshape(Z,100,100));holdon;plot3(x,y,z,'.')。

你可能感兴趣的:(matlab,神经网络,算法)