OpenCV自带的adaboost程序能够根据用户输入的正样本集与负样本集训练分类器,常用于人脸检测,行人检测等。它的默认特征采用了Haar,不支持其它特征。
Adaboost的原理简述:(原文)
每个Haar特征对应看一个弱分类器,但并不是任伺一个Haar特征都能较好的描述人脸灰度分布的某一特点,如何从大量的Haar特征中挑选出最优的Haar特征并制作成分类器用于人脸检测,这是AdaBoost算法训练过程所要解决的关键问题。
Paul Viola和Michael Jones于2001年将Adaboost算法应用于人脸检测中,其基本思想是针对不同的训练集训练同一个分类器(弱分类器),然后把这些不同训练集上的得到的分类器联合起来,构成一个最终的强分类器。Adaboost 算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,对于h1 分类错误的样本,加大其对应的权重; 而对于分类正确的样本, 降低其权重, 这样分错的样本就被突出出来,从而得到一个新的样本分布 U2 。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器 h2 。依次类推,经过 T 次循环,得到 T 个弱分类器,把这 T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。
训练系统总体框架,由“ 训练部分”和 “ 补充部分”构成。依据系统框架,本文的训练系统可分为以下几个模块:
(1)以样本集为输入,在给定的矩形特征原型下,计算并获得矩形特征集;
(2)以特征集为输入,根据给定的弱学习算法,确定闽值,将特征与弱分类器一一对应,获得弱分类器集;
(3)以弱分类器集为输入, 在训练检出率和误判率限制下, 使用A d a B o o s t 算法
挑选最优的弱分类器构成强分类器;
(4)以强分类器集为输入,将其组合为级联分类器;
(5)以非人脸图片集为输入,组合强分类器为临时的级联分类器,筛选并补充
非人脸样本。
训练样本的选择:
训练样本要求是面部特写图像,图1是一簇训练样本,大小被归一化为24×24像素,其中正训练样本要求是面部特写图像,但是人脸形态千差万别,所以训练样本选取过程中要考虑到样本的多样性。负训练样本,大小被归一化为24×24像素,其中各样本不完全相同,分别具有一定的代表性。
训练过程分为3个步骤:首先需要提取Haar特征;然后将Haar特征转化成对应的弱分类器;最后从大量的弱分类器中迭代选择出最优弱分类器。
(1)提取Haar特征
常用的Haar特征有4种,如图2所示。当然也可以在这4种特征的基础上设计出更多、更复杂的特征。以大小为24X24像素的训练样本为例,上述4种特征的总个数超过了160000个。这样庞大的数字给后续的迭代训练工作带来了庞大的计算量,直接导致AdaBoost算法训练过程极为费时,这恰恰是算法需要改进的关键问题之一o
(2)生成弱分类器
每一个Haar特征都对应着一个弱分类器,每一个弱分类器都是根据它所对应的Haar特征的参数来定义的。利用上述Haar特征的位置信息,对训练样本进行统计就可以得到对应的特征参数。AdaBoost算法中所训练的弱分类器是任何分类器,包括决策树,神经网络,隐马尔科夫模型,如果弱分类器是线性神经网络,那么AdaBoost算法每次将构造多层感知器的一个节点。
(3)采用AdaBoost算法选取优化的弱分类器
AdaBoost算法训练过程就是挑选最优弱分类器,并赋予权重过程,图3是AdaBoost算法训练示意图。
用OpenCV自带的adaboost程序训练分类器:(原文在此,本文稍作修改)
重要!可能遇到的问题:
1.如果跑到某一个分类器时,几个小时也没有反应,而且显示不出训练百分比,这是因为你的负样本数量太少,或者负样本的尺寸太小,所有的负样本在这个分类器都被reject了,程序进入不了下一个循环,果断放弃吧。解决方法:负样本尽量要大一些,比如我的正样本是40*15,共300个,负样本是640*480,共500个。
2.读取样本时报错:Negative or too large argument of CvAlloc function,网上说这个错误是因为opencv规定单幅iplimage的内存分配不能超过10000,可是我的每个负样本都不会超过这个大小,具体原因不明。后来我把负样本的数量减少,尺寸加大,这个问题就解决了。
3.训练的过程可能经常出错,耐心下来不要着急,我在训练MRI分类器的时候失败了无数次。失败的时候有两件事可以做,第一,调整正负样本的数量,再试。第二,调整负样本的大小,祝大家好运。
一、简介
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。
分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。"boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。
根据上面的分析,目标检测分为三个步骤:
1、 样本的创建
2、 训练分类器
3、 利用训练好的分类器进行目标检测。
二、样本创建
训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。
负样本
负样本可以来自于任意的图片,但这些图片不能包含目标特征。在用opencv自带的adaboost程序训练负样本时,负样本的大小不一定要与正样本相同。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下:
采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则:
按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b > negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。
正样本
对于正样本,通常的做法是先把所有正样本裁切好,并对尺寸做规整(即缩放至指定大小)。
由于HaarTraining训练时输入的正样本是vec文件,所以需要使用OpenCV自带的CreateSamples程序(在你所按照的opencv\bin下,如果没有需要编译opencv\apps\HaarTraining\make下的.dsw文件,注意要编译release版的)将准备好的正样本转换为vec文件。转换的步骤如下:
1) 制作一个正样本描述文件,用于描述正样本文件名(包括绝对路径或相对路径),正样本数目以及各正样本在图片中的位置和大小。典型的正样本描述文件如下:
posdata/1(10).bmp 1 1 1 23 23
posdata/1(11).bmp 1 1 1 23 23
posdata/1(12).bmp 1 1 1 23 23
不过你可以把描述文件放在你的posdata路径(即正样本路径)下,这样你就不需要加前面的相对路径了。同样它的生成方式可以用负样本描述文件的生成方法,最后用txt的替换工具将“bmp”全部替换成“bmp 1 1 1 23 23
”就可以了,如果你的样本图片多,用txt替换会导致程序未响应,你可以将内容拷到word下替换,然后再拷回来。bmp后面那五个数字分别表示图片个数,目标的起始位置及其宽高。这样就生成了正样本描述文件posdata.dat。
2) 运行CreateSamples程序。如果直接在VC环境下运行,可以在Project\Settings\Debug属性页的Program arguments栏设置运行参数。下面是一个运行参数示例:
-info D:\face\posdata\posdata.dat -vec D:\face\pos.vec -num 50 -w 20 -h 20
表示有50个样本,样本宽20,高20,正样本描述文件为posdata.dat,结果输出到pos.vec。
或者在dos下输入:
"D:\Program Files\OpenCV\bin\createsamples.exe" -info "posdata\posdata.dat" -vec data\pos.vec -num 50 -w 20 -h 20
运行完了会d:\face\data下生成一个*.vec的文件。该文件包含正样本数目,宽高以及所有样本图像数据。
Createsamples程序的命令行参数:
命令行参数:
-vec <vec_file_name>
训练好的正样本的输出文件名。
-img<image_file_name>
源目标图片(例如:一个公司图标)
-bg<background_file_name>
背景描述文件。
-num<number_of_samples>
要产生的正样本的数量,和正样本图片数目相同。
-bgcolor<background_color>
背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。
-bgthresh<background_color_threshold>
-inv
如果指定,颜色会反色
-randinv
如果指定,颜色会任意反色
-maxidev<max_intensity_deviation>
背景色最大的偏离度。
-maxangel<max_x_rotation_angle>
-maxangle<max_y_rotation_angle>,
-maxzangle<max_x_rotation_angle>
最大旋转角度,以弧度为单位。
-show
如果指定,每个样本会被显示出来,按下"esc"会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。
-w<sample_width>
输出样本的宽度(以像素为单位)
-h《sample_height》
输出样本的高度,以像素为单位。
到此第一步样本训练就完成了。恭喜你,你已经学会训练分类器的五成功力了,我自己学这个的时候花了我一天的时间,估计你几分钟就学会了吧。
三、训练分类器
样本创建之后,接下来要训练分类器,这个过程是由haartraining程序来实现的。该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。
Haartraining的命令行参数如下:
-data<dir_name>
存放训练好的分类器的路径名。
-vec<vec_file_name>
正样本文件名(由trainingssamples程序或者由其他的方法创建的)
-bg<background_file_name>
背景描述文件。
-npos<number_of_positive_samples>,
-nneg<number_of_negative_samples>
用来训练每一个分类器阶段的正/负样本。合理的值是:nPos = 7000;nNeg = 3000
-nstages<number_of_stages>
训练的阶段数。
-nsplits<number_of_splits>
决定用于阶段分类器的弱分类器。如果1,则一个简单的stump classifier被使用。如果是2或者更多,则带有number_of_splits个内部节点的CART分类器被使用。
-mem<memory_in_MB>
预先计算的以MB为单位的可用内存。内存越大则训练的速度越快。
-sym(default)
-nonsym
指定训练的目标对象是否垂直对称。垂直对称提高目标的训练速度。例如,正面部是垂直对称的。
-minhitrate《min_hit_rate》
每个阶段分类器需要的最小的命中率。总的命中率为min_hit_rate的number_of_stages次方。
-maxfalsealarm<max_false_alarm_rate>
没有阶段分类器的最大错误报警率。总的错误警告率为max_false_alarm_rate的number_of_stages次方。
-weighttrimming<weight_trimming>
指定是否使用权修正和使用多大的权修正。一个基本的选择是0.9
-eqw
-mode<basic(default)|core|all>
选择用来训练的haar特征集的种类。basic仅仅使用垂直特征。all使用垂直和45度角旋转特征。
-w《sample_width》
-h《sample_height》
训练样本的尺寸,(以像素为单位)。必须和训练样本创建的尺寸相同。
一个训练分类器的例子:
"D:\Program Files\OpenCV\bin\haartraining.exe" -data data\cascade -vec data\pos.vec -bg negdata\negdata.dat -npos 49 -nneg 49 -mem 200 -mode ALL -w 20 -h 20
训练结束后,会在目录data下生成一些子目录,即为训练好的分类器。
恭喜你,你已经学会训练分类器的九成功力了。
四:利用训练好的分类器进行目标检测。
这一步需要用到performance.exe,该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。
performance.exe -data data/cascade -info posdata/test.dat -w 20 -h 20 -rs 30
performance的命令行参数如下:
Usage: ./performance
-data <classifier_directory_name>
-info <collection_file_name>
[-maxSizeDiff <max_size_difference = 1.500000>]
[-maxPosDiff <max_position_difference = 0.300000>]
[-sf <scale_factor = 1.200000>]
[-ni]
[-nos <number_of_stages = -1>]
[-rs <roc_size = 40>]
[-w <sample_width = 24>]
[-h <sample_height = 24>]
也可以用opencv的cvHaarDetectObjects函数进行检测:
CvSeq* faces = cvHaarDetectObjects( img, cascade, storage,1.1, 2, CV_HAAR_DO_CANNY_PRUNING,cvSize(40, 40) ); //3. 检测人脸
注:OpenCv的某些版本可以将这些目录中的分类器直接转换成xml文件。但在实际的操作中,haartraining程序却好像永远不会停止,而且没有生成xml文件,后来在OpenCV的yahoo论坛上找到一个haarconv的程序,才将分类器转换为xml文件,其中的原因尚待研究。