Spark Streaming基础概述

文章目录

  • 第一章 Spark Streaming引入
    • Spark Streaming介绍
    • 实时计算所处的位置
  • 第二章 Spark Streaming原理
    • SparkStreaming原理
      • 整体流程
      • 数据抽象
    • DStream相关操作
      • Transformations
      • Output/Action
    • 总结
  • 第三章 Spark Streaming实战
    • WordCount
      • 需求&准备
      • 代码演示
      • 执行
    • updateStateByKey
      • 问题
      • 代码演示
      • 执行
    • reduceByKeyAndWindow
      • 图解
      • 代码演示
      • 执行
    • 统计一定时间内的热门词汇TopN
      • 需求
      • 代码演示
      • 执行
  • 第四章 整合kafka
    • Kafka快速回顾
    • 整合Kafka两种模式说明
    • spark-streaming-kafka-0-8(了解)
      • Receiver
      • Direct
    • spark-streaming-kafka-0-10
    • 扩展:Kafka手动维护偏移量

第一章 Spark Streaming引入

Spark Streaming介绍

官网

http://spark.apache.org/streaming/

概述
Spark Streaming是一个基于Spark Core之上的实时计算框架,可以从很多数据源消费数据并对数据进行实时的处理,具有高吞吐量和容错能力强等特点。

Spark Streaming的特点

  1. 易用
    可以像编写离线批处理一 样去编写流式程序,支持java/scala/python语言。
  2. 容错
    SparkStreaming在没有额外代码和配置的情况下可以恢复丢失的工作。
  3. 易整合到Spark体系
    流式处理与批处理和交互式查询相结合。

实时计算所处的位置

Spark Streaming基础概述_第1张图片

第二章 Spark Streaming原理

SparkStreaming原理

整体流程

  Spark Streaming中,会有一个接收器组件Receiver,作为一个长期运行的task跑在一个Executor上。Receiver接收外部的数据流形成input DStream

  DStream会被按照时间间隔划分成一批一批的RDD,当批处理间隔缩短到秒级时,便可以用于处理实时数据流。时间间隔的大小可以由参数指定,一般设在500毫秒到几秒之间。

  对DStream进行操作就是对RDD进行操作,计算处理的结果可以传给外部系统。
Spark Streaming的工作流程像下面的图所示一样,接收到实时数据后,给数据分批次,然后传给Spark Engine(引擎)处理最后生成该批次的结果。
Spark Streaming基础概述_第2张图片

数据抽象

  Spark Streaming的基础抽象是DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流

可以从以下多个角度深入理解DStream

  1. DStream本质上就是一系列时间上连续的RDD
    Spark Streaming基础概述_第3张图片
  2. 对DStream的数据的进行操作也是按照RDD为单位来进行的
    Spark Streaming基础概述_第4张图片
  3. 容错性
      底层RDD之间存在依赖关系,DStream直接也有依赖关系,RDD具有容错性,那么DStream也具有容错性
    如图:
    每一个椭圆形表示一个RDD
    椭圆形中的每个圆形代表一个RDD中的一个Partition分区
    每一列的多个RDD表示一个DStream(图中有三列所以有三个DStream)
    每一行最后一个RDD则表示每一个Batch Size所产生的中间结果RDD
    Spark Streaming基础概述_第5张图片
  4. 准实时性/近实时性
      Spark Streaming将流式计算分解成多个Spark Job,对于每一时间段数据的处理都会经过Spark DAG图分解以及Spark的任务集的调度过程。
      对于目前版本的Spark Streaming而言,其最小的Batch Size的选取在0.5~5秒钟之间
      所以Spark Streaming能够满足流式准实时计算场景,对实时性要求非常高的如高频实时交易场景则不太适合

总结
简单来说DStream就是对RDD的封装,你对DStream进行操作,就是对RDD进行操作
对于DataFrame/DataSet/DStream来说本质上都可以理解成RDD
Spark Streaming基础概述_第6张图片

DStream相关操作

DStream上的操作与RDD的类似,分为以下两种:

  • Transformations(转换)
  • Output Operations(输出)/Action

Transformations

常见Transformation—无状态转换每个批次的处理不依赖于之前批次的数据

Transformation Meaning
map(func) 对DStream中的各个元素进行func函数操作,然后返回一个新的DStream
flatMap(func 与map方法类似,只不过各个输入项可以被输出为零个或多个输出项
filter(func) 过滤出所有函数func返回值为true的DStream元素并返回一个新的DStream
union(otherStream) 将源DStream和输入参数为otherDStream的元素合并,并返回一个新的DStream.
reduceByKey(func, [numTasks]) 利用func函数对源DStream中的key进行聚合操作,然后返回新的(K,V)对构成的DStream
join(otherStream, [numTasks]) 输入为(K,V)、(K,W)类型的DStream,返回一个新的(K,(V,W)类型的DStream
transform(func) 通过RDD-to-RDD函数作用于DStream中的各个RDD,可以是任意的RDD操作,从而返回一个新的RDD

特殊的Transformations—有状态转换当前批次的处理需要使用之前批次的数据或者中间结果。
有状态转换包括基于追踪状态变化的转换(updateStateByKey)和滑动窗口的转换

  1. UpdateStateByKey(func)
  2. Window Operations 窗口操作

Output/Action

Output Operations可以将DStream的数据输出到外部的数据库或文件系统
当某个Output Operations被调用时,spark streaming程序才会开始真正的计算过程(与RDD的Action类似)

Output Operation Meaning
print() 打印到控制台
saveAsTextFiles(prefix, [suffix]) 保存流的内容为文本文件,文件名为"prefix-TIME_IN_MS[.suffix]".
saveAsObjectFiles(prefix,[suffix]) 保存流的内容为SequenceFile,文件名为 “prefix-TIME_IN_MS[.suffix]”.
saveAsHadoopFiles(prefix,[suffix]) 保存流的内容为hadoop文件,文件名为"prefix-TIME_IN_MS[.suffix]".
foreachRDD(func) 对Dstream里面的每个RDD执行func

总结

Spark Streaming基础概述_第7张图片

第三章 Spark Streaming实战

WordCount

需求&准备

图解
Spark Streaming基础概述_第8张图片

首先在linux服务器上安装nc工具
nc是netcat的简称,原本是用来设置路由器,我们可以利用它向某个端口发送数据
yum install -y nc

启动一个服务端并开放9999端口,等一下往这个端口发数据
nc -lk 9999

发送数据


代码演示

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //2.监听Socket接收数据
    //ReceiverInputDStream就是接收到的所有的数据组成的RDD,封装成了DStream,接下来对DStream进行操作就是对RDD进行操作
    val dataDStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)
    //3.操作数据
    val wordDStream: DStream[String] = dataDStream.flatMap(_.split(" "))
    val wordAndOneDStream: DStream[(String, Int)] = wordDStream.map((_,1))
    val wordAndCount: DStream[(String, Int)] = wordAndOneDStream.reduceByKey(_+_)
    wordAndCount.print()
    ssc.start()//开启
    ssc.awaitTermination()//等待停止
  }
}

执行

  1. 先执行nc -lk 9999
  2. 然后执行代码
  3. 不断的在1中输入不同的单词
    hadoop spark sqoop hadoop spark hive hadoop
  4. 观察IDEA控制台输出
    sparkStreaming每隔5s计算一次当前5s内的数据,然后将每个批次的数据输出

updateStateByKey

问题

在上面的那个案例中存在这样一个问题:
每个批次的单词次数都被正确的统计出来,但是结果不能累加!
如果需要累加需要使用updateStateByKey(func)来更新状态.

代码演示

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}


object WordCount2 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //requirement failed: ....Please set it by StreamingContext.checkpoint().
    //注意:我们在下面使用到了updateStateByKey对当前数据和历史数据进行累加
    //那么历史数据存在哪?我们需要给他设置一个checkpoint目录
    ssc.checkpoint("./wc")//开发中HDFS
    //2.监听Socket接收数据
    //ReceiverInputDStream就是接收到的所有的数据组成的RDD,封装成了DStream,接下来对DStream进行操作就是对RDD进行操作
    val dataDStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)
    //3.操作数据
    val wordDStream: DStream[String] = dataDStream.flatMap(_.split(" "))
    val wordAndOneDStream: DStream[(String, Int)] = wordDStream.map((_,1))
    //val wordAndCount: DStream[(String, Int)] = wordAndOneDStream.reduceByKey(_+_)
    //====================使用updateStateByKey对当前数据和历史数据进行累加====================
    val wordAndCount: DStream[(String, Int)] =wordAndOneDStream.updateStateByKey(updateFunc)
    wordAndCount.print()
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }
  //currentValues:当前批次的value值,如:1,1,1 (以测试数据中的hadoop为例)
  //historyValue:之前累计的历史值,第一次没有值是0,第二次是3
  //目标是把当前数据+历史数据返回作为新的结果(下次的历史数据)
  def updateFunc(currentValues:Seq[Int], historyValue:Option[Int] ):Option[Int] ={
// currentValues当前值
// historyValue历史值
    val result: Int = currentValues.sum + historyValue.getOrElse(0)
    Some(result)
  }
}

执行

  1. 先执行nc -lk 9999
  2. 然后执行以上代码
  3. 不断的在1中输入不同的单词,
    hadoop spark sqoop hadoop spark hive hadoop
  4. 观察IDEA控制台输出
    sparkStreaming每隔5s计算一次当前5s内的数据,然后将每个批次的结果数据累加输出。

reduceByKeyAndWindow

图解

滑动窗口转换操作的计算过程如下图所示,
我们可以事先设定一个滑动窗口的长度(也就是窗口的持续时间),并且设定滑动窗口的时间间隔(每隔多长时间执行一次计算),
比如设置滑动窗口的长度(也就是窗口的持续时间)为24H,设置滑动窗口的时间间隔(每隔多长时间执行一次计算)为1H
那么意思就是:每隔1H计算最近24H的数据
Spark Streaming基础概述_第9张图片

代码演示

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

object WordCount3 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //2.监听Socket接收数据
    //ReceiverInputDStream就是接收到的所有的数据组成的RDD,封装成了DStream,接下来对DStream进行操作就是对RDD进行操作
    val dataDStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)
    //3.操作数据
    val wordDStream: DStream[String] = dataDStream.flatMap(_.split(" "))
    val wordAndOneDStream: DStream[(String, Int)] = wordDStream.map((_,1))
 
    val wordAndCount: DStream[(String, Int)] = wordAndOneDStream.reduceByKeyAndWindow((a:Int,b:Int)=>a+b,Seconds(10),Seconds(5))
   //4.使用窗口函数进行WordCount计数
    //reduceFunc: (V, V) => V,集合函数
    //windowDuration: Duration,窗口长度/宽度
    //slideDuration: Duration,窗口滑动间隔
    //注意:windowDuration和slideDuration必须是batchDuration的倍数
    //windowDuration=slideDuration:数据不会丢失也不会重复计算==开发中会使用
    //windowDuration>slideDuration:数据会重复计算==开发中会使用
    //windowDuration
    //代码表示:
    //windowDuration=10
    //slideDuration=5
    //那么执行结果就是每隔5s计算最近10s的数据
    //比如开发中让你统计最近1小时的数据,每隔1分钟计算一次,那么参数该如何设置?

    wordAndCount.print()
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }
}

执行

  1. 先执行nc -lk 9999
  2. 然后执行以上代码
  3. 不断的在1中输入不同的单词
    hadoop spark sqoop hadoop spark hive hadoop
  4. 观察IDEA控制台输出
    现象:sparkStreaming每隔5s计算一次当前在窗口大小为10s内的数据,然后将结果数据输出。

统计一定时间内的热门词汇TopN

需求

模拟百度热搜排行榜
统计最近10s的热搜词Top3,每隔5秒计算一次
WindowDuration = 10s
SlideDuration = 5s

代码演示

package cn.itcast.streaming

import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

 /*
 1. Desc 我们要模拟百度热搜排行榜统计最近10s的热搜词Top3,每隔5秒计算一次
  */
object WordCount4 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //2.监听Socket接收数据
    //ReceiverInputDStream就是接收到的所有的数据组成的RDD,封装成了DStream,接下来对DStream进行操作就是对RDD进行操作
    val dataDStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)
    //3.操作数据
    val wordDStream: DStream[String] = dataDStream.flatMap(_.split(" "))
    val wordAndOneDStream: DStream[(String, Int)] = wordDStream.map((_,1))
    //4.使用窗口函数进行WordCount计数
    val wordAndCount: DStream[(String, Int)] = wordAndOneDStream.reduceByKeyAndWindow((a:Int,b:Int)=>a+b,Seconds(10),Seconds(5))
    val sorteDStream: DStream[(String, Int)] = wordAndCount.transform(rdd => {
      val sortedRDD: RDD[(String, Int)] = rdd.sortBy(_._2, false) //逆序/降序
      println("===============top3==============")
      sortedRDD.take(3).foreach(println)
      println("===============top3==============")
      sortedRDD
    }
    )
    //No output operations registered, so nothing to execute
    sorteDStream.print
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }
}

执行

  1. 先执行nc -lk 9999
  2. 然后在执行以上代码
  3. 不断的在1中输入不同的单词
    hadoop spark sqoop hadoop spark hive hadoop
  4. 观察IDEA控制台输出

第四章 整合kafka

Kafka快速回顾

核心概念图解
Spark Streaming基础概述_第10张图片

  • Broker : 安装Kafka服务的机器就是一个broker
  • Producer : 消息的生产者,负责将数据写入到broker中(push)
  • Consumer: 消息的消费者,负责从kafka中拉取数据(pull),老版本的消费者需要依赖zk,新版本的不需要
  • Topic: 主题,相当于是数据的一个分类,不同topic存放不同业务的数据 --主题:区分业务
  • Replication: 副本,数据保存多少份(保证数据不丢失) --副本:数据安全
  • Partition: 分区,是一个物理的分区,一个分区就是一个文件,一个Topic可以有1~n个分区,每个分区都有自己的副本 --分区:并发读写
  • Consumer Group: 消费者组,一个topic可以有多个消费者/组同时消费,多个消费者如果在一个消费者组中,那么他们不能重复消费数据
    –消费者组:提高消费者消费速度、方便统一管理

注意: 一个Topic可以被多个消费者或者组订阅,一个消费者/组也可以订阅多个主题
注意: 读数据只能从Leader读, 写数据也只能往Leader写,Follower会从Leader那里同步数据过来做副本!!!

常用命令

#启动kafka
/export/servers/kafka/bin/kafka-server-start.sh -daemon /export/servers/kafka/config/server.properties 
#停止kafka
/export/servers/kafka/bin/kafka-server-stop.sh 
#查看topic信息
/export/servers/kafka/bin/kafka-topics.sh --list --zookeeper node01:2181
#创建topic
/export/servers/kafka/bin/kafka-topics.sh --create --zookeeper node01:2181 --replication-factor 3 --partitions 3 --topic test
#查看某个topic信息
/export/servers/kafka/bin/kafka-topics.sh --describe --zookeeper node01:2181 --topic test
#删除topic
/export/servers/kafka/bin/kafka-topics.sh --zookeeper node01:2181 --delete --topic test
#启动生产者--控制台的生产者一般用于测试
/export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092 --topic spark_kafka
#启动消费者--控制台的消费者一般用于测试
/export/servers/kafka/bin/kafka-console-consumer.sh --zookeeper node01:2181 --topic spark_kafka--from-beginning
 消费者连接到borker的地址
/export/servers/kafka/bin/kafka-console-consumer.sh --bootstrap-server node01:9092,node02:9092,node03:9092 --topic spark_kafka --from-beginning 

整合Kafka两种模式说明

面试题: Receiver & Direct
开发中我们经常会利用SparkStreaming实时地读取kafka中的数据然后进行处理,在spark1.3版本后,kafkaUtils里面提供了两种创建DStream的方法:

  1. Receiver接收方式:
     KafkaUtils.createDstream(开发中不用,了解即可,但是面试可能会问)
     Receiver作为常驻的Task运行在Executor等待数据,但是一个Receiver效率低,需要开启多个,再手动合并数据(union),再进行处理,很麻烦
     Receiver哪台机器挂了,可能会丢失数据,所以需要开启WAL(预写日志)保证数据安全,那么效率又会降低!
     Receiver方式是通过zookeeper来连接kafka队列,调用Kafka高阶API,offset存储在zookeeper,由Receiver维护,
     spark在消费的时候为了保证数据不丢也会在Checkpoint中存一份offset,可能会出现数据不一致
     所以不管从何种角度来说,Receiver模式都不适合在开发中使用了,已经淘汰了
  2. Direct直连方式:
     KafkaUtils.createDirectStream(开发中使用,要求掌握)
     Direct方式是直接连接kafka分区来获取数据,从每个分区直接读取数据大大提高了并行能力
     Direct方式调用Kafka低阶API(底层API),offset自己存储和维护,默认由Spark维护在checkpoint中,消除了与zk不一致的情况
     当然也可以自己手动维护,把offset存在mysql、redis中
     所以基于Direct模式可以在开发中使用,且借助Direct模式的特点+手动操作可以保证数据的Exactly once 精准一次

总结:
Receiver接收方式
  1、多个Receiver接受数据效率高,但有丢失数据的风险。
  2、开启日志(WAL)可防止数据丢失,但写两遍数据效率低。
  3、Zookeeper维护offset有重复消费数据可能。
  4、使用高层次的API
Direct直连方式
  1、不使用Receiver,直接到kafka分区中读取数据
  2、不使用日志(WAL)机制。
  3、Spark自己维护offset
  4、使用低层次的API

扩展: 关于消息语义

实现方式 消息语义 存在的问题
Receiver at most once最多被处理一次 会丢失数据
Receiver+WAL at least once最少被处理一次 不会丢失数据,但可能会重复消费,且效率低
Direct+手动操作 exactly once只被处理一次/精准一次 不会丢失数据,也不会重复消费,且效率高

注意:
开发中SparkStreaming和kafka集成有两个版本:0.8及0.10+
0.8版本有Receiver和Direct模式(但是0.8版本生产环境问题较多,在Spark2.3之后不支持0.8版本了)
0.10以后只保留了direct模式(Reveiver模式不适合生产环境),并且0.10版本API有变化(更加强大)

spark-streaming-kafka-0-8(了解)

Receiver

  KafkaUtils.createDstream使用了receivers来接收数据,利用的是Kafka高层次的消费者api,偏移量由Receiver维护在zk中,对于所有的receivers接收到的数据将会保存在Spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,它同步将接受到数据保存到分布式文件系统上比如HDFS。保证数据在出错的情况下可以恢复出来。尽管这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是启用了WAL效率会较低,且无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。
官方现在已经不推荐这种整合方式
Spark Streaming基础概述_第11张图片

准备工作
  1.启动zookeeper集群

zkServer.sh start

  2.启动kafka集群

kafka-server-start.sh  /export/servers/kafka/config/server.properties

  3.创建topic

kafka-topics.sh --create --zookeeper node01:2181 --replication-factor 1 --partitions 3 --topic spark_kafka

  4.通过shell命令向topic发送消息

kafka-console-producer.sh --broker-list node01:9092 --topic  spark_kafka
hadoop spark sqoop hadoop spark hive hadoop

  5.添加kafka的pom依赖

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
    <version>2.2.0</version>
</dependency>

API
  通过receiver接收器获取kafka中topic数据,可以并行运行更多的接收器读取kafak topic中的数据,这里为3个

val receiverDStream: immutable.IndexedSeq[ReceiverInputDStream[(String, String)]] = (1 to 3).map(x => {
  val stream: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc, zkQuorum, groupId, topics)
  stream
})

  如果启用了WAL(spark.streaming.receiver.writeAheadLog.enable=true)可以设置存储级别(默认StorageLevel.MEMORY_AND_DISK_SER_2)

代码演示

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.immutable

object SparkKafka {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    val config: SparkConf = 
new SparkConf().setAppName("SparkStream").setMaster("local[*]")
      .set("spark.streaming.receiver.writeAheadLog.enable", "true")
//开启WAL预写日志,保证数据源端可靠性
    val sc = new SparkContext(config)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))
    ssc.checkpoint("./kafka")
//==============================================
    //2.准备配置参数
    val zkQuorum = "node01:2181,node02:2181,node03:2181"
    val groupId = "spark"
    val topics = Map("spark_kafka" -> 2)//2表示每一个topic对应分区都采用2个线程去消费,
//ssc的rdd分区和kafka的topic分区不一样,增加消费线程数,并不增加spark的并行处理数据数量
    //3.通过receiver接收器获取kafka中topic数据,可以并行运行更多的接收器读取kafak topic中的数据,这里为3个
    val receiverDStream: immutable.IndexedSeq[ReceiverInputDStream[(String, String)]] = (1 to 3).map(x => {
      val stream: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc, zkQuorum, groupId, topics)
      stream
    })
    //4.使用union方法,将所有receiver接受器产生的Dstream进行合并
    val allDStream: DStream[(String, String)] = ssc.union(receiverDStream)
    //5.获取topic的数据(String, String) 第1个String表示topic的名称,第2个String表示topic的数据
    val data: DStream[String] = allDStream.map(_._2)
//==============================================
    //6.WordCount
    val words: DStream[String] = data.flatMap(_.split(" "))
    val wordAndOne: DStream[(String, Int)] = words.map((_, 1))
    val result: DStream[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

Direct

  Direct方式会定期地从kafka的topic下对应的partition中查询最新的偏移量,再根据偏移量范围在每个batch里面处理数据,Spark通过调用kafka简单的消费者API读取一定范围的数据。
Spark Streaming基础概述_第12张图片
Direct的缺点是无法使用基于zookeeper的kafka监控工具

Direct相比基于Receiver方式有几个优点:

简化并行
  不需要创建多个kafka输入流,然后union它们,sparkStreaming将会创建和kafka分区数一样的rdd的分区数,而且会从kafka中并行读取数据,spark中RDD的分区数和kafka中的分区数据是一一对应的关系。

高效
  Receiver实现数据的零丢失是将数据预先保存在WAL中,会复制一遍数据,会导致数据被拷贝两次,第一次是被kafka复制,另一次是写到WAL中。而Direct不使用WAL消除了这个问题。

恰好一次语义(Exactly-once-semantics)
  Receiver读取kafka数据是通过kafka高层次api把偏移量写入zookeeper中,虽然这种方法可以通过数据保存在WAL中保证数据不丢失,但是可能会因为sparkStreaming和ZK中保存的偏移量不一致而导致数据被消费了多次。
  Direct的Exactly-once-semantics(EOS)通过实现kafka低层次api,偏移量仅仅被ssc保存在checkpoint中,消除了zk和ssc偏移量不一致的问题。

API

KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

代码演示

package cn.itcast.streaming

import kafka.serializer.StringDecoder
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}


object SparkKafka2 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    val config: SparkConf = 
new SparkConf().setAppName("SparkStream").setMaster("local[*]")
    val sc = new SparkContext(config)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))
    ssc.checkpoint("./kafka")
    //==============================================
    //2.准备配置参数
    val kafkaParams = Map("metadata.broker.list" -> "node01:9092,node02:9092,node03:9092", "group.id" -> "spark")
    val topics = Set("spark_kafka")
    val allDStream: InputDStream[(String, String)] = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
    //3.获取topic的数据
    val data: DStream[String] = allDStream.map(_._2)
    //==============================================
    //WordCount
    val words: DStream[String] = data.flatMap(_.split(" "))
    val wordAndOne: DStream[(String, Int)] = words.map((_, 1))
    val result: DStream[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

spark-streaming-kafka-0-10

说明
spark-streaming-kafka-0-10版本中,API有一定的变化,操作更加灵活,开发中使用

pom.xml

<!--<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
    <version>${spark.version}</version>
</dependency>-->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>${spark.version}</version>
</dependency>

API

[http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html](http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html)

创建topic

/export/servers/kafka/bin/kafka-topics.sh --create --zookeeper node01:2181 --replication-factor 3 --partitions 3 --topic spark_kafka

启动生产者

/export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092,node01:9092,node01:9092 --topic spark_kafka

代码演示

package cn.itcast.streaming

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

object SparkKafkaDemo {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)3
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //准备连接Kafka的参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "node01:9092,node02:9092,node03:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "SparkKafkaDemo",
      //earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
      //latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
      //none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
      //这里配置latest自动重置偏移量为最新的偏移量,即如果有偏移量从偏移量位置开始消费,没有偏移量从新来的数据开始消费
      "auto.offset.reset" -> "latest",
      //false表示关闭自动提交.由spark帮你提交到Checkpoint或程序员手动维护
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    val topics = Array("spark_kafka")
    //2.使用KafkaUtil连接Kafak获取数据
    val recordDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](ssc,
      LocationStrategies.PreferConsistent,//位置策略,源码强烈推荐使用该策略,会让Spark的Executor和Kafka的Broker均匀对应
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams))//消费策略,源码强烈推荐使用该策略
    //3.获取VALUE数据
    val lineDStream: DStream[String] = recordDStream.map(_.value())//_指的是ConsumerRecord
    val wrodDStream: DStream[String] = lineDStream.flatMap(_.split(" ")) //_指的是发过来的value,即一行数据
    val wordAndOneDStream: DStream[(String, Int)] = wrodDStream.map((_,1))
    val result: DStream[(String, Int)] = wordAndOneDStream.reduceByKey(_+_)
    result.print()
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }
}

扩展:Kafka手动维护偏移量

API

[http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html](http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html) 

启动生产者

/export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092,node01:9092,node01:9092 --topic spark_kafka

代码演示

package cn.itcast.streaming

import java.sql.{DriverManager, ResultSet}

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{OffsetRange, _}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable

object SparkKafkaDemo2 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //准备连接Kafka的参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "node01:9092,node02:9092,node03:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "SparkKafkaDemo",
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    val topics = Array("spark_kafka")
    //2.使用KafkaUtil连接Kafak获取数据
    //注意:
    //如果MySQL中没有记录offset,则直接连接,从latest开始消费
    //如果MySQL中有记录offset,则应该从该offset处开始消费
    val offsetMap: mutable.Map[TopicPartition, Long] = OffsetUtil.getOffsetMap("SparkKafkaDemo","spark_kafka")
    val recordDStream: InputDStream[ConsumerRecord[String, String]] = if(offsetMap.size > 0){//有记录offset
      println("MySQL中记录了offset,则从该offset处开始消费")
      KafkaUtils.createDirectStream[String, String](ssc,
      LocationStrategies.PreferConsistent,//位置策略,源码强烈推荐使用该策略,会让Spark的Executor和Kafka的Broker均匀对应
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams,offsetMap))//消费策略,源码强烈推荐使用该策略
    }else{//没有记录offset
      println("没有记录offset,则直接连接,从latest开始消费")
      // /export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092 --topic  spark_kafka
      KafkaUtils.createDirectStream[String, String](ssc,
      LocationStrategies.PreferConsistent,//位置策略,源码强烈推荐使用该策略,会让Spark的Executor和Kafka的Broker均匀对应
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams))//消费策略,源码强烈推荐使用该策略
    }
    //3.操作数据
    //注意:我们的目标是要自己手动维护偏移量,也就意味着,消费了一小批数据就应该提交一次offset
    //而这一小批数据在DStream的表现形式就是RDD,所以我们需要对DStream中的RDD进行操作
    //而对DStream中的RDD进行操作的API有transform(转换)和foreachRDD(动作)
    recordDStream.foreachRDD(rdd=>{
      if(rdd.count() > 0){//当前这一时间批次有数据
        rdd.foreach(record => println("接收到的Kafk发送过来的数据为:" + record))
        //接收到的Kafk发送过来的数据为:ConsumerRecord(topic = spark_kafka, partition = 1, offset = 6, CreateTime = 1565400670211, checksum = 1551891492, serialized key size = -1, serialized value size = 43, key = null, value = hadoop spark ...)
        //注意:通过打印接收到的消息可以看到,里面有我们需要维护的offset,和要处理的数据
        //接下来可以对数据进行处理....或者使用transform返回和之前一样处理
        //处理数据的代码写完了,就该维护offset了,那么为了方便我们对offset的维护/管理,spark提供了一个类,帮我们封装offset的数据
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (o <- offsetRanges){
          println(s"topic=${o.topic},partition=${o.partition},fromOffset=${o.fromOffset},untilOffset=${o.untilOffset}")
        }
        //手动提交offset,默认提交到Checkpoint中
        //recordDStream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
        //实际中偏移量可以提交到MySQL/Redis中
        OffsetUtil.saveOffsetRanges("SparkKafkaDemo",offsetRanges)
      }
    })

   /* val lineDStream: DStream[String] = recordDStream.map(_.value())//_指的是ConsumerRecord
    val wrodDStream: DStream[String] = lineDStream.flatMap(_.split(" ")) //_指的是发过来的value,即一行数据
    val wordAndOneDStream: DStream[(String, Int)] = wrodDStream.map((_,1))
    val result: DStream[(String, Int)] = wordAndOneDStream.reduceByKey(_+_)
    result.print()*/
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }


  /*
  手动维护offset的工具类
  首先在MySQL创建如下表
    CREATE TABLE `t_offset` (
      `topic` varchar(255) NOT NULL,
      `partition` int(11) NOT NULL,
      `groupid` varchar(255) NOT NULL,
      `offset` bigint(20) DEFAULT NULL,
      PRIMARY KEY (`topic`,`partition`,`groupid`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
   */
  object OffsetUtil {

    //从数据库读取偏移量
    def getOffsetMap(groupid: String, topic: String) = {
      val connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "root")
      val pstmt = connection.prepareStatement("select * from t_offset where groupid=? and topic=?")
      pstmt.setString(1, groupid)
      pstmt.setString(2, topic)
      val rs: ResultSet = pstmt.executeQuery()
      val offsetMap = mutable.Map[TopicPartition, Long]()
      while (rs.next()) {
        offsetMap += new TopicPartition(rs.getString("topic"), rs.getInt("partition")) -> rs.getLong("offset")
      }
      rs.close()
      pstmt.close()
      connection.close()
      offsetMap
    }

    //将偏移量保存到数据库
    def saveOffsetRanges(groupid: String, offsetRange: Array[OffsetRange]) = {
      val connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "root")
      //replace into表示之前有就替换,没有就插入
      val pstmt = connection.prepareStatement("replace into t_offset (`topic`, `partition`, `groupid`, `offset`) values(?,?,?,?)")
      for (o <- offsetRange) {
        pstmt.setString(1, o.topic)
        pstmt.setInt(2, o.partition)
        pstmt.setString(3, groupid)
        pstmt.setLong(4, o.untilOffset)
        pstmt.executeUpdate()
      }
      pstmt.close()
      connection.close()
    }
  }
}

你可能感兴趣的:(Spark,大数据全家桶)