深度学习实战07-卷积神经网络(Xception)实现动物识别

  • 本文为365天深度学习训练营 中的学习记录博客

参考文章:
https://blog.csdn.net/qq_38389717/article/details/108904221

一、前期准备

1. 设置GPU

如果使用的是cpu,可以去掉这部分代码。

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)   # 设置GPU显存用量按需使用
    tf.config.set_visible_devices(gpus[0], "GPU")
    
# 打印显卡信息,确认GPU可用
print(gpus)

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']   # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号

import os, PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子,尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

import pathlib


data_dir = "./datasets/data/"

data_dir = pathlib.Path(data_dir)

3.查看数据

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

深度学习实战07-卷积神经网络(Xception)实现动物识别_第1张图片

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。

batch_size = 10
img_height = 299
img_width  = 299
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

深度学习实战07-卷积神经网络(Xception)实现动物识别_第2张图片

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

深度学习实战07-卷积神经网络(Xception)实现动物识别_第3张图片

我们可以通过class_names输出数据集的标签。将标签按字母顺序对应目录的名称。

class_names = train_ds.class_names
print(class_names)

深度学习实战07-卷积神经网络(Xception)实现动物识别_第4张图片

补充:去掉.ipynb_checkpoints类的方法:

# %autosave 0

# os.removedirs("./datasets/data/" + "/.ipynb_checkpoints")

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

深度学习实战07-卷积神经网络(Xception)实现动物识别_第5张图片

  • Image_batch是形状的张量(2,299,299,3)。这是一批形状2402403的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片。

4. 配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:
    https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行。
    -cache():将数据集缓存到内存当中,加速运行。
# AUTOTUNE = tf.data.AUTOTUNE

# 报错:AttributeError: module 'tensorflow._api.v2.data' has no attribute 'AUTOTUNE'
# 解决方法:
AUTOTUNE = tf.data.experimental.AUTOTUNE

train_ds = (
    train_ds.cache()
    .shuffle(1000)
#     .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds.cache()
    .shuffle(1000)
#     .map(val_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

三、构建模型

Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其中Inception模块已被深度可分离卷积(depthwise separable convolution)替换。它与Inception-v1(23M)的参数数量大致相同。
深度学习实战07-卷积神经网络(Xception)实现动物识别_第6张图片

1. 深度可分离卷积

深度可分离卷积其实是一种可分解卷积操作(factorized convolutions)。其中可以分解为两个更小的操作:depthwise convolution和pointwise convolution。
深度学习实战07-卷积神经网络(Xception)实现动物识别_第7张图片

(1)标准卷积

下面先学习标准卷积的操作:
深度学习实战07-卷积神经网络(Xception)实现动物识别_第8张图片

输入一个12 12 3的一个输入特征图,经过5 5 3的卷积核得到一个881的输出特征图。如果我们此时有256个卷积核,我们将会得到一个8 8 256的输出特征图。

以上就是标准卷积做的活,那么深度卷积和逐点卷积呢?

(2)深度卷积

深度学习实战07-卷积神经网络(Xception)实现动物识别_第9张图片

与标准卷积不一样的是,这里会将卷积核拆分成单通道形式,在不改变输入特征图像的深度的情况下,对每一通道进行卷积操作,这样就得到了和输入特征图通道数一致的输出特征图。如上图,输入12 * 12 * 3的特征图,经过5 * 5 * 1 * 5的深度卷积后,得到了8 * 8 * 3的输出特征图。输入和输出的维度是不变的3,这样就会有一个问题,通道数太少,特征图的维度太少,能获得足够的有效信息吗?

(3)逐点卷积

逐点卷积就是1 * 1卷积,主要作用就是对特征图进行升维和降维,如下图:
深度学习实战07-卷积神经网络(Xception)实现动物识别_第10张图片

在深度卷积的过程中,我们得到了8 * 8 * 3的输出特征图,我们用256个1 * 1 * 3的卷积核对输入特征图进行卷积操作,输出的特征图和标准卷积操作一样都是8 * 8 * 256了。

标准卷积和深度可分离卷积的过程对比如下:
深度学习实战07-卷积神经网络(Xception)实现动物识别_第11张图片

(4)为什么要用深度可分离卷积?

深度可分离卷积可以实现更少的参数,更少的运算量。

2. 构建Xception模型

#====================================#
#     Xception的网络部分
#====================================#
from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import Model
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Input,BatchNormalization,Activation,Conv2D,SeparableConv2D,MaxPooling2D
from tensorflow.keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D
from tensorflow.keras import backend as K
from tensorflow.keras.applications.imagenet_utils import decode_predictions


def Xception(input_shape = [299,299,3],classes=1000):

    img_input = Input(shape=input_shape)
    
    #=================#
    #   Entry flow
    #=================#
    #  block1
    # 299,299,3 -> 149,149,64
    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input)
    x = BatchNormalization(name='block1_conv1_bn')(x)
    x = Activation('relu', name='block1_conv1_act')(x)
    x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = BatchNormalization(name='block1_conv2_bn')(x)
    x = Activation('relu', name='block1_conv2_act')(x)


    # block2
    # 149,149,64 -> 75,75,128
    residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
    x = BatchNormalization(name='block2_sepconv1_bn')(x)
    x = Activation('relu', name='block2_sepconv2_act')(x)
    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
    x = BatchNormalization(name='block2_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
    x = layers.add([x, residual])

    # block3
    # 75,75,128 -> 38,38,256
    residual = Conv2D(256, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block3_sepconv1_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
    x = BatchNormalization(name='block3_sepconv1_bn')(x)
    x = Activation('relu', name='block3_sepconv2_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
    x = BatchNormalization(name='block3_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
    x = layers.add([x, residual])

    # block4
    # 38,38,256 -> 19,19,728
    residual = Conv2D(728, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block4_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
    x = BatchNormalization(name='block4_sepconv1_bn')(x)
    x = Activation('relu', name='block4_sepconv2_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
    x = BatchNormalization(name='block4_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
    x = layers.add([x, residual])

    #=================#
    # Middle flow
    #=================#
    # block5--block12
    # 19,19,728 -> 19,19,728
    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x)
        x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x)
        x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x)
        x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    #=================#
    #    Exit flow
    #=================#
    # block13
    # 19,19,728 -> 10,10,1024
    residual = Conv2D(1024, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block13_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
    x = BatchNormalization(name='block13_sepconv1_bn')(x)
    x = Activation('relu', name='block13_sepconv2_act')(x)
    x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
    x = BatchNormalization(name='block13_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
    x = layers.add([x, residual])

    # block14
    # 10,10,1024 -> 10,10,2048
    x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
    x = BatchNormalization(name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)

    x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
    x = BatchNormalization(name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)

    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)

    inputs = img_input

    model = Model(inputs, x, name='xception')

    return model
model = Xception()
# 打印模型信息
model.summary()
Model: "xception"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 299, 299, 3) 0                                            
__________________________________________________________________________________________________
block1_conv1 (Conv2D)           (None, 149, 149, 32) 864         input_1[0][0]                    
__________________________________________________________________________________________________
block1_conv1_bn (BatchNormaliza (None, 149, 149, 32) 128         block1_conv1[0][0]               
__________________________________________________________________________________________________
block1_conv1_act (Activation)   (None, 149, 149, 32) 0           block1_conv1_bn[0][0]            
__________________________________________________________________________________________________
block1_conv2 (Conv2D)           (None, 147, 147, 64) 18432       block1_conv1_act[0][0]           
__________________________________________________________________________________________________
block1_conv2_bn (BatchNormaliza (None, 147, 147, 64) 256         block1_conv2[0][0]               
__________________________________________________________________________________________________
block1_conv2_act (Activation)   (None, 147, 147, 64) 0           block1_conv2_bn[0][0]            
__________________________________________________________________________________________________
block2_sepconv1 (SeparableConv2 (None, 147, 147, 128 8768        block1_conv2_act[0][0]           
__________________________________________________________________________________________________
block2_sepconv1_bn (BatchNormal (None, 147, 147, 128 512         block2_sepconv1[0][0]            
__________________________________________________________________________________________________
block2_sepconv2_act (Activation (None, 147, 147, 128 0           block2_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block2_sepconv2 (SeparableConv2 (None, 147, 147, 128 17536       block2_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block2_sepconv2_bn (BatchNormal (None, 147, 147, 128 512         block2_sepconv2[0][0]            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 74, 74, 128)  8192        block1_conv2_act[0][0]           
__________________________________________________________________________________________________
block2_pool (MaxPooling2D)      (None, 74, 74, 128)  0           block2_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 74, 74, 128)  512         conv2d[0][0]                     
__________________________________________________________________________________________________
add (Add)                       (None, 74, 74, 128)  0           block2_pool[0][0]                
                                                                 batch_normalization[0][0]        
__________________________________________________________________________________________________
block3_sepconv1_act (Activation (None, 74, 74, 128)  0           add[0][0]                        
__________________________________________________________________________________________________
block3_sepconv1 (SeparableConv2 (None, 74, 74, 256)  33920       block3_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block3_sepconv1_bn (BatchNormal (None, 74, 74, 256)  1024        block3_sepconv1[0][0]            
__________________________________________________________________________________________________
block3_sepconv2_act (Activation (None, 74, 74, 256)  0           block3_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block3_sepconv2 (SeparableConv2 (None, 74, 74, 256)  67840       block3_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block3_sepconv2_bn (BatchNormal (None, 74, 74, 256)  1024        block3_sepconv2[0][0]            
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 37, 37, 256)  32768       add[0][0]                        
__________________________________________________________________________________________________
block3_pool (MaxPooling2D)      (None, 37, 37, 256)  0           block3_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 37, 37, 256)  1024        conv2d_1[0][0]                   
__________________________________________________________________________________________________
add_1 (Add)                     (None, 37, 37, 256)  0           block3_pool[0][0]                
                                                                 batch_normalization_1[0][0]      
__________________________________________________________________________________________________
block4_sepconv1_act (Activation (None, 37, 37, 256)  0           add_1[0][0]                      
__________________________________________________________________________________________________
block4_sepconv1 (SeparableConv2 (None, 37, 37, 728)  188672      block4_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block4_sepconv1_bn (BatchNormal (None, 37, 37, 728)  2912        block4_sepconv1[0][0]            
__________________________________________________________________________________________________
block4_sepconv2_act (Activation (None, 37, 37, 728)  0           block4_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block4_sepconv2 (SeparableConv2 (None, 37, 37, 728)  536536      block4_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block4_sepconv2_bn (BatchNormal (None, 37, 37, 728)  2912        block4_sepconv2[0][0]            
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 19, 19, 728)  186368      add_1[0][0]                      
__________________________________________________________________________________________________
block4_pool (MaxPooling2D)      (None, 19, 19, 728)  0           block4_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 19, 19, 728)  2912        conv2d_2[0][0]                   
__________________________________________________________________________________________________
add_2 (Add)                     (None, 19, 19, 728)  0           block4_pool[0][0]                
                                                                 batch_normalization_2[0][0]      
__________________________________________________________________________________________________
block5_sepconv1_act (Activation (None, 19, 19, 728)  0           add_2[0][0]                      
__________________________________________________________________________________________________
block5_sepconv1 (SeparableConv2 (None, 19, 19, 728)  536536      block5_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block5_sepconv1_bn (BatchNormal (None, 19, 19, 728)  2912        block5_sepconv1[0][0]            
__________________________________________________________________________________________________
block5_sepconv2_act (Activation (None, 19, 19, 728)  0           block5_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block5_sepconv2 (SeparableConv2 (None, 19, 19, 728)  536536      block5_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block5_sepconv2_bn (BatchNormal (None, 19, 19, 728)  2912        block5_sepconv2[0][0]            
__________________________________________________________________________________________________
block5_sepconv3_act (Activation (None, 19, 19, 728)  0           block5_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
block5_sepconv3 (SeparableConv2 (None, 19, 19, 728)  536536      block5_sepconv3_act[0][0]        
__________________________________________________________________________________________________
block5_sepconv3_bn (BatchNormal (None, 19, 19, 728)  2912        block5_sepconv3[0][0]            
__________________________________________________________________________________________________
add_3 (Add)                     (None, 19, 19, 728)  0           block5_sepconv3_bn[0][0]         
                                                                 add_2[0][0]                      
__________________________________________________________________________________________________
block6_sepconv1_act (Activation (None, 19, 19, 728)  0           add_3[0][0]                      
__________________________________________________________________________________________________
block6_sepconv1 (SeparableConv2 (None, 19, 19, 728)  536536      block6_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block6_sepconv1_bn (BatchNormal (None, 19, 19, 728)  2912        block6_sepconv1[0][0]            
__________________________________________________________________________________________________
block6_sepconv2_act (Activation (None, 19, 19, 728)  0           block6_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block6_sepconv2 (SeparableConv2 (None, 19, 19, 728)  536536      block6_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block6_sepconv2_bn (BatchNormal (None, 19, 19, 728)  2912        block6_sepconv2[0][0]            
__________________________________________________________________________________________________
block6_sepconv3_act (Activation (None, 19, 19, 728)  0           block6_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
block6_sepconv3 (SeparableConv2 (None, 19, 19, 728)  536536      block6_sepconv3_act[0][0]        
__________________________________________________________________________________________________
block6_sepconv3_bn (BatchNormal (None, 19, 19, 728)  2912        block6_sepconv3[0][0]            
__________________________________________________________________________________________________
add_4 (Add)                     (None, 19, 19, 728)  0           block6_sepconv3_bn[0][0]         
                                                                 add_3[0][0]                      
__________________________________________________________________________________________________
block7_sepconv1_act (Activation (None, 19, 19, 728)  0           add_4[0][0]                      
__________________________________________________________________________________________________
block7_sepconv1 (SeparableConv2 (None, 19, 19, 728)  536536      block7_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block7_sepconv1_bn (BatchNormal (None, 19, 19, 728)  2912        block7_sepconv1[0][0]            
__________________________________________________________________________________________________
block7_sepconv2_act (Activation (None, 19, 19, 728)  0           block7_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block7_sepconv2 (SeparableConv2 (None, 19, 19, 728)  536536      block7_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block7_sepconv2_bn (BatchNormal (None, 19, 19, 728)  2912        block7_sepconv2[0][0]            
__________________________________________________________________________________________________
block7_sepconv3_act (Activation (None, 19, 19, 728)  0           block7_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
block7_sepconv3 (SeparableConv2 (None, 19, 19, 728)  536536      block7_sepconv3_act[0][0]        
__________________________________________________________________________________________________
block7_sepconv3_bn (BatchNormal (None, 19, 19, 728)  2912        block7_sepconv3[0][0]            
__________________________________________________________________________________________________
add_5 (Add)                     (None, 19, 19, 728)  0           block7_sepconv3_bn[0][0]         
                                                                 add_4[0][0]                      
__________________________________________________________________________________________________
block8_sepconv1_act (Activation (None, 19, 19, 728)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block8_sepconv1 (SeparableConv2 (None, 19, 19, 728)  536536      block8_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block8_sepconv1_bn (BatchNormal (None, 19, 19, 728)  2912        block8_sepconv1[0][0]            
__________________________________________________________________________________________________
block8_sepconv2_act (Activation (None, 19, 19, 728)  0           block8_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block8_sepconv2 (SeparableConv2 (None, 19, 19, 728)  536536      block8_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block8_sepconv2_bn (BatchNormal (None, 19, 19, 728)  2912        block8_sepconv2[0][0]            
__________________________________________________________________________________________________
block8_sepconv3_act (Activation (None, 19, 19, 728)  0           block8_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
block8_sepconv3 (SeparableConv2 (None, 19, 19, 728)  536536      block8_sepconv3_act[0][0]        
__________________________________________________________________________________________________
block8_sepconv3_bn (BatchNormal (None, 19, 19, 728)  2912        block8_sepconv3[0][0]            
__________________________________________________________________________________________________
add_6 (Add)                     (None, 19, 19, 728)  0           block8_sepconv3_bn[0][0]         
                                                                 add_5[0][0]                      
__________________________________________________________________________________________________
block9_sepconv1_act (Activation (None, 19, 19, 728)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block9_sepconv1 (SeparableConv2 (None, 19, 19, 728)  536536      block9_sepconv1_act[0][0]        
__________________________________________________________________________________________________
block9_sepconv1_bn (BatchNormal (None, 19, 19, 728)  2912        block9_sepconv1[0][0]            
__________________________________________________________________________________________________
block9_sepconv2_act (Activation (None, 19, 19, 728)  0           block9_sepconv1_bn[0][0]         
__________________________________________________________________________________________________
block9_sepconv2 (SeparableConv2 (None, 19, 19, 728)  536536      block9_sepconv2_act[0][0]        
__________________________________________________________________________________________________
block9_sepconv2_bn (BatchNormal (None, 19, 19, 728)  2912        block9_sepconv2[0][0]            
__________________________________________________________________________________________________
block9_sepconv3_act (Activation (None, 19, 19, 728)  0           block9_sepconv2_bn[0][0]         
__________________________________________________________________________________________________
block9_sepconv3 (SeparableConv2 (None, 19, 19, 728)  536536      block9_sepconv3_act[0][0]        
__________________________________________________________________________________________________
block9_sepconv3_bn (BatchNormal (None, 19, 19, 728)  2912        block9_sepconv3[0][0]            
__________________________________________________________________________________________________
add_7 (Add)                     (None, 19, 19, 728)  0           block9_sepconv3_bn[0][0]         
                                                                 add_6[0][0]                      
__________________________________________________________________________________________________
block10_sepconv1_act (Activatio (None, 19, 19, 728)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block10_sepconv1 (SeparableConv (None, 19, 19, 728)  536536      block10_sepconv1_act[0][0]       
__________________________________________________________________________________________________
block10_sepconv1_bn (BatchNorma (None, 19, 19, 728)  2912        block10_sepconv1[0][0]           
__________________________________________________________________________________________________
block10_sepconv2_act (Activatio (None, 19, 19, 728)  0           block10_sepconv1_bn[0][0]        
__________________________________________________________________________________________________
block10_sepconv2 (SeparableConv (None, 19, 19, 728)  536536      block10_sepconv2_act[0][0]       
__________________________________________________________________________________________________
block10_sepconv2_bn (BatchNorma (None, 19, 19, 728)  2912        block10_sepconv2[0][0]           
__________________________________________________________________________________________________
block10_sepconv3_act (Activatio (None, 19, 19, 728)  0           block10_sepconv2_bn[0][0]        
__________________________________________________________________________________________________
block10_sepconv3 (SeparableConv (None, 19, 19, 728)  536536      block10_sepconv3_act[0][0]       
__________________________________________________________________________________________________
block10_sepconv3_bn (BatchNorma (None, 19, 19, 728)  2912        block10_sepconv3[0][0]           
__________________________________________________________________________________________________
add_8 (Add)                     (None, 19, 19, 728)  0           block10_sepconv3_bn[0][0]        
                                                                 add_7[0][0]                      
__________________________________________________________________________________________________
block11_sepconv1_act (Activatio (None, 19, 19, 728)  0           add_8[0][0]                      
__________________________________________________________________________________________________
block11_sepconv1 (SeparableConv (None, 19, 19, 728)  536536      block11_sepconv1_act[0][0]       
__________________________________________________________________________________________________
block11_sepconv1_bn (BatchNorma (None, 19, 19, 728)  2912        block11_sepconv1[0][0]           
__________________________________________________________________________________________________
block11_sepconv2_act (Activatio (None, 19, 19, 728)  0           block11_sepconv1_bn[0][0]        
__________________________________________________________________________________________________
block11_sepconv2 (SeparableConv (None, 19, 19, 728)  536536      block11_sepconv2_act[0][0]       
__________________________________________________________________________________________________
block11_sepconv2_bn (BatchNorma (None, 19, 19, 728)  2912        block11_sepconv2[0][0]           
__________________________________________________________________________________________________
block11_sepconv3_act (Activatio (None, 19, 19, 728)  0           block11_sepconv2_bn[0][0]        
__________________________________________________________________________________________________
block11_sepconv3 (SeparableConv (None, 19, 19, 728)  536536      block11_sepconv3_act[0][0]       
__________________________________________________________________________________________________
block11_sepconv3_bn (BatchNorma (None, 19, 19, 728)  2912        block11_sepconv3[0][0]           
__________________________________________________________________________________________________
add_9 (Add)                     (None, 19, 19, 728)  0           block11_sepconv3_bn[0][0]        
                                                                 add_8[0][0]                      
__________________________________________________________________________________________________
block12_sepconv1_act (Activatio (None, 19, 19, 728)  0           add_9[0][0]                      
__________________________________________________________________________________________________
block12_sepconv1 (SeparableConv (None, 19, 19, 728)  536536      block12_sepconv1_act[0][0]       
__________________________________________________________________________________________________
block12_sepconv1_bn (BatchNorma (None, 19, 19, 728)  2912        block12_sepconv1[0][0]           
__________________________________________________________________________________________________
block12_sepconv2_act (Activatio (None, 19, 19, 728)  0           block12_sepconv1_bn[0][0]        
__________________________________________________________________________________________________
block12_sepconv2 (SeparableConv (None, 19, 19, 728)  536536      block12_sepconv2_act[0][0]       
__________________________________________________________________________________________________
block12_sepconv2_bn (BatchNorma (None, 19, 19, 728)  2912        block12_sepconv2[0][0]           
__________________________________________________________________________________________________
block12_sepconv3_act (Activatio (None, 19, 19, 728)  0           block12_sepconv2_bn[0][0]        
__________________________________________________________________________________________________
block12_sepconv3 (SeparableConv (None, 19, 19, 728)  536536      block12_sepconv3_act[0][0]       
__________________________________________________________________________________________________
block12_sepconv3_bn (BatchNorma (None, 19, 19, 728)  2912        block12_sepconv3[0][0]           
__________________________________________________________________________________________________
add_10 (Add)                    (None, 19, 19, 728)  0           block12_sepconv3_bn[0][0]        
                                                                 add_9[0][0]                      
__________________________________________________________________________________________________
block13_sepconv1_act (Activatio (None, 19, 19, 728)  0           add_10[0][0]                     
__________________________________________________________________________________________________
block13_sepconv1 (SeparableConv (None, 19, 19, 728)  536536      block13_sepconv1_act[0][0]       
__________________________________________________________________________________________________
block13_sepconv1_bn (BatchNorma (None, 19, 19, 728)  2912        block13_sepconv1[0][0]           
__________________________________________________________________________________________________
block13_sepconv2_act (Activatio (None, 19, 19, 728)  0           block13_sepconv1_bn[0][0]        
__________________________________________________________________________________________________
block13_sepconv2 (SeparableConv (None, 19, 19, 1024) 752024      block13_sepconv2_act[0][0]       
__________________________________________________________________________________________________
block13_sepconv2_bn (BatchNorma (None, 19, 19, 1024) 4096        block13_sepconv2[0][0]           
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 10, 10, 1024) 745472      add_10[0][0]                     
__________________________________________________________________________________________________
block13_pool (MaxPooling2D)     (None, 10, 10, 1024) 0           block13_sepconv2_bn[0][0]        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 10, 10, 1024) 4096        conv2d_3[0][0]                   
__________________________________________________________________________________________________
add_11 (Add)                    (None, 10, 10, 1024) 0           block13_pool[0][0]               
                                                                 batch_normalization_3[0][0]      
__________________________________________________________________________________________________
block14_sepconv1 (SeparableConv (None, 10, 10, 1536) 1582080     add_11[0][0]                     
__________________________________________________________________________________________________
block14_sepconv1_bn (BatchNorma (None, 10, 10, 1536) 6144        block14_sepconv1[0][0]           
__________________________________________________________________________________________________
block14_sepconv1_act (Activatio (None, 10, 10, 1536) 0           block14_sepconv1_bn[0][0]        
__________________________________________________________________________________________________
block14_sepconv2 (SeparableConv (None, 10, 10, 2048) 3159552     block14_sepconv1_act[0][0]       
__________________________________________________________________________________________________
block14_sepconv2_bn (BatchNorma (None, 10, 10, 2048) 8192        block14_sepconv2[0][0]           
__________________________________________________________________________________________________
block14_sepconv2_act (Activatio (None, 10, 10, 2048) 0           block14_sepconv2_bn[0][0]        
__________________________________________________________________________________________________
avg_pool (GlobalAveragePooling2 (None, 2048)         0           block14_sepconv2_act[0][0]       
__________________________________________________________________________________________________
predictions (Dense)             (None, 1000)         2049000     avg_pool[0][0]                   
==================================================================================================
Total params: 22,910,480
Trainable params: 22,855,952
Non-trainable params: 54,528
__________________________________________________________________________________________________

四、设置动态学习率

先罗列以下学习率大与小的优缺点:

  • 学习率大
    • 优点
      1. 加快学习速率。
      2. 有助于跳出局部最优值。
    • 缺点
      1. 导致模型训练不收敛。
      2. 单单使用大学习率容易导致模型不精确。
  • 学习率小
    • 优点
      1. 有助于模型收敛、模型细化。
      2. 提高模型精度。
    • 缺点
      1. 很难跳出局部最优值。
      2. 收敛缓慢。

注意:这里设置的动态学习率为:指数衰减(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:
== learning_rate = initial_learning_rate * decay_rate^(step / decay_steps) ==

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=300,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.96,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 损失函数(loss):用于估量预测值与真实值的不一致程度。
  • 评价函数(metrics):用于监控训练步骤和测试步骤。以下示例使用了准确率,即被正确分类的图像的比例。
model.compile(optimizer=optimizer,
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

六、训练模型

epochs = 5

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

深度学习实战07-卷积神经网络(Xception)实现动物识别_第12张图片

七、模型评估

1. Accuracy和Loss图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

深度学习实战07-卷积神经网络(Xception)实现动物识别_第13张图片

2. 混淆矩阵

Seaborn是一个画图库,它基于Matplotlib核心库进行了更高阶的API封装,可以让你轻松画出更漂亮的图形。Seaborn的漂亮主要体现在配色更加舒服,以及图形元素的样式更加细腻。

from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd

# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):
    
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('混淆矩阵',fontsize=15)
    plt.ylabel('真实值',fontsize=14)
    plt.xlabel('预测值',fontsize=14)
val_pre   = []
val_label = []

for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
    for image, label in zip(images, labels):
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(image, 0) 
        # 使用模型预测图片中的人物
        prediction = model.predict(img_array)

        val_pre.append(class_names[np.argmax(prediction)])
        val_label.append(class_names[label])

plot_cm(val_label, val_pre)

深度学习实战07-卷积神经网络(Xception)实现动物识别_第14张图片

八、保存和加载模型

# 保存模型
model.save('model/24_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/24_model.h5')

你可能感兴趣的:(Python深度学习,深度学习,cnn,python)