CS231n的第三次作业之图像生成:类别,反演和DeepDream

在本作业中,你将实现循环网络,并将其应用于在微软的COCO数据库上进行图像标注。我们还会介绍TinyImageNet数据集,然后在这个数据集使用一个预训练的模型来查看图像梯度的不同应用。


到目前为止,在CS231N中,我们探索的神经网络的所有应用都是具有判别能力的模型,该模型接受输入并经过训练以产生标记的输出。 范围从简单的图像类别分类到句子生成(仍然被称为分类问题,我们的标签在词汇空间中,并且我们学会了重复捕获多词标签)。 在本笔记本中,我们将扩展功能范围,并使用神经网络构建生成模型。 具体来说,我们将学习如何构建模型,以生成类似于一组训练图像的新颖图像。

GAN

2014年,Goodfellow等人。 提出了一种用于训练生成模型的方法,称为生成对抗网络(简称GAN)。 在GAN中,我们建立了两个不同的神经网络。 我们的第一个网络是传统的分类网络,称为鉴别器。 我们将训练鉴别器拍摄图像,并将其分类为真实的(属于训练集)或伪造的(不在训练集中)。 我们称为发电机的另一个网络将随机噪声作为输入,并使用神经网络对其进行转换以生成图像。 生成器的目的是使鉴别器误以为生成的图像是真实的。
我们可以想到生成器()试图欺骗鉴别器()的这种来回过程,并且鉴别器试图将真假对数正确分类为minimax游戏:
在这里插入图片描述
1.更新生成器(),以最大化鉴别器对生成数据做出错误选择的可能性
在这里插入图片描述
2.更新鉴别器(D),以最大化鉴别符对真实数据和生成的数据做出正确选择的可能性:
在这里插入图片描述

import torch
import torch.nn as nn
from torch.nn import init
import torchvision
import torchvision.transforms as T
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import sampler
import torchvision.datasets as dset

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

def show_images(images):
    images = np.reshape(images, [images.shape[0], -1])  # images reshape to (batch_size, D)
    sqrtn = int(np.ceil(np.sqrt(images.shape[0])))
    sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))

    fig = plt.figure(figsize=(sqrtn, sqrtn))
    gs = gridspec.GridSpec(sqrtn, sqrtn)
    gs.update(wspace=0.05, hspace=0.05)

    for i, img in enumerate(images):
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(img.reshape([sqrtimg,sqrtimg]))
    return 

def preprocess_img(x):
    return 2 * x - 1.0

def deprocess_img(x):
    return (x + 1.0) / 2.0

def rel_error(x,y):
    return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))

def count_params(model):
    """Count the number of parameters in the current TensorFlow graph """
    param_count = np.sum([np.prod(p.size()) for p in model.parameters()])
    return param_count

answers = dict(np.load('gan-checks-tf.npz'))

众所周知,GAN具有超参数的挑剔性,并且还需要很多训练集。 为了使这种分配在没有GPU的情况下可以实现,我们将研究MNIST数据集,该数据集是60,000个训练图像和10,000个测试图像。 每张图片在黑色背景(0到9)上包含白色数字的居中图像。 这是用于训练卷积神经网络的首批数据集之一,而且非常简单-标准的CNN模型可以轻松超过99%的准确性。

class ChunkSampler(sampler.Sampler):
    """Samples elements sequentially from some offset. 
    Arguments:
        num_samples: # of desired datapoints
        start: offset where we should start selecting from
    """
    def __init__(self, num_samples, start=0):
        self.num_samples = num_samples
        self.start = start

    def __iter__(self):
        return iter(range(self.start, self.start + self.num_samples))

    def __len__(self):
        return self.num_samples

NUM_TRAIN = 50000
NUM_VAL = 5000

NOISE_DIM = 96
batch_size = 128

mnist_train = dset.MNIST('./cs231n/datasets/MNIST_data', train=True, download=True,
                           transform=T.ToTensor())
loader_train = DataLoader(mnist_train, batch_size=batch_size,
                          sampler=ChunkSampler(NUM_TRAIN, 0))

mnist_val = dset.MNIST('./cs231n/datasets/MNIST_data', train=True, download=True,
                           transform=T.ToTensor())
loader_val = DataLoader(mnist_val, batch_size=batch_size,
                        sampler=ChunkSampler(NUM_VAL, NUM_TRAIN))


imgs = loader_train.__iter__().next()[0].view(batch_size, 784).numpy().squeeze()
show_images(imgs)
def sample_noise(batch_size, dim):
    """
    Generate a PyTorch Tensor of uniform random noise.

    Input:
    - batch_size: Integer giving the batch size of noise to generate.
    - dim: Integer giving the dimension of noise to generate.
    
    Output:
    - A PyTorch Tensor of shape (batch_size, dim) containing uniform
      random noise in the range (-1, 1).
    """
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    return torch.rand(batch_size, dim)*2 - 1.

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
def test_sample_noise():
    batch_size = 3
    dim = 4
    torch.manual_seed(231)
    z = sample_noise(batch_size, dim)
    np_z = z.cpu().numpy()
    assert np_z.shape == (batch_size, dim)
    assert torch.is_tensor(z)
    assert np.all(np_z >= -1.0) and np.all(np_z <= 1.0)
    assert np.any(np_z < 0.0) and np.any(np_z > 0.0)
    print('All tests passed!')
    
test_sample_noise()
class Flatten(nn.Module):
    def forward(self, x):
        N, C, H, W = x.size() # read in N, C, H, W
        return x.view(N, -1)  # "flatten" the C * H * W values into a single vector per image
    
class Unflatten(nn.Module):
    """
    An Unflatten module receives an input of shape (N, C*H*W) and reshapes it
    to produce an output of shape (N, C, H, W).
    """
    def __init__(self, N=-1, C=128, H=7, W=7):
        super(Unflatten, self).__init__()
        self.N = N
        self.C = C
        self.H = H
        self.W = W
    def forward(self, x):
        return x.view(self.N, self.C, self.H, self.W)

def initialize_weights(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose2d):
        init.xavier_uniform_(m.weight.data)
#dtype = torch.FloatTensor
dtype = torch.cuda.FloatTensor ## UNCOMMENT THIS LINE IF YOU'RE ON A GPU!

鉴别器
我们的第一步是建立一个鉴别器。 在下面的函数中,将架构作为nn.Sequential构造函数的一部分进行填写。 所有完全连接的层应包括偏置项。 该体系结构是

1.全连接层,输入大小为784,输出大小为256
2.含alpha 0.01的LeakyReLU
3.全连接层,输入大小为256,输出大小为256
4.含alpha 0.01的LeakyReLU
5.全连接层,输入大小为256,输出大小为1
回想一下,漏泄的ReLU非线性对于某些固定常数计算()= max(,); 对于以上架构中的LeakyReLU非线性,我们将 = 0.01设置为。

def discriminator():
    """
    Build and return a PyTorch model implementing the architecture above.
    """
    model = nn.Sequential(
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            Flatten(),
            nn.Linear(784, 256),
            nn.LeakyReLU(0.01),
            nn.Linear(256, 256),
            nn.LeakyReLU(0.01),
            nn.Linear(256, 1),

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    )
    return model

def test_discriminator(true_count=267009):
    model = discriminator()
    cur_count = count_params(model)
    if cur_count != true_count:
        print('Incorrect number of parameters in discriminator. Check your achitecture.')
    else:
        print('Correct number of parameters in discriminator.')     

test_discriminator()

生成器

def generator(noise_dim=NOISE_DIM):
    """
    Build and return a PyTorch model implementing the architecture above.
    """
    model = nn.Sequential(
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            nn.Linear(noise_dim, 1024),
            nn.ReLU(),
            nn.Linear(1024, 1024),
            nn.ReLU(),
            nn.Linear(1024, 784),
            nn.Tanh(),

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    )
    return model

def test_generator(true_count=1858320):
    model = generator(4)
    cur_count = count_params(model)
    if cur_count != true_count:
        print('Incorrect number of parameters in generator. Check your achitecture.')
    else:
        print('Correct number of parameters in generator.')

test_generator()

GAN损失¶
计算生成器和鉴别器损耗。 生成器损耗为:
ℓ= −∼()[log(())]

鉴别损失是:
ℓ=-〜data[log()]-〜()[log(1-(()))]

def bce_loss(input, target):
    """
    Numerically stable version of the binary cross-entropy loss function.

    As per https://github.com/pytorch/pytorch/issues/751
    See the TensorFlow docs for a derivation of this formula:
    https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits

    Inputs:
    - input: PyTorch Tensor of shape (N, ) giving scores.
    - target: PyTorch Tensor of shape (N,) containing 0 and 1 giving targets.

    Returns:
    - A PyTorch Tensor containing the mean BCE loss over the minibatch of input data.
    """
    neg_abs = - input.abs()
    loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
    return loss.mean()

def discriminator_loss(logits_real, logits_fake):
    """
    Computes the discriminator loss described above.
    
    Inputs:
    - logits_real: PyTorch Tensor of shape (N,) giving scores for the real data.
    - logits_fake: PyTorch Tensor of shape (N,) giving scores for the fake data.
    
    Returns:
    - loss: PyTorch Tensor containing (scalar) the loss for the discriminator.
    """
    loss = bce_loss(logits_real, torch.ones(logits_real.size()).type(dtype))+bce_loss(logits_fake, torch.zeros(logits_fake.size()).type(dtype))
    return loss

def generator_loss(logits_fake):
    """
    Computes the generator loss described above.

    Inputs:
    - logits_fake: PyTorch Tensor of shape (N,) giving scores for the fake data.
    
    Returns:
    - loss: PyTorch Tensor containing the (scalar) loss for the generator.
    """
    loss = bce_loss(logits_fake, torch.ones(logits_fake.size()).type(dtype))
    return loss

def test_discriminator_loss(logits_real, logits_fake, d_loss_true):
    d_loss = discriminator_loss(torch.Tensor(logits_real).type(dtype),
                                torch.Tensor(logits_fake).type(dtype)).cpu().numpy()
    print("Maximum error in d_loss: %g"%rel_error(d_loss_true, d_loss))

test_discriminator_loss(answers['logits_real'], answers['logits_fake'],
                        answers['d_loss_true'])

def test_generator_loss(logits_fake, g_loss_true):
    g_loss = generator_loss(torch.Tensor(logits_fake).type(dtype)).cpu().numpy()
    print("Maximum error in g_loss: %g"%rel_error(g_loss_true, g_loss))

test_generator_loss(answers['logits_fake'], answers['g_loss_true'])

优化损失函数

def get_optimizer(model):
    """
    Construct and return an Adam optimizer for the model with learning rate 1e-3,
    beta1=0.5, and beta2=0.999.
    
    Input:
    - model: A PyTorch model that we want to optimize.
    
    Returns:
    - An Adam optimizer for the model with the desired hyperparameters.
    """
    optimizer = optim.Adam(model.parameters(), lr = 1e-3, betas = (0.5, 0.999))
    return optimizer

训练GAN

def run_a_gan(D, G, D_solver, G_solver, discriminator_loss, generator_loss, show_every=250, 
              batch_size=128, noise_size=96, num_epochs=10):
    """
    Train a GAN!
    
    Inputs:
    - D, G: PyTorch models for the discriminator and generator
    - D_solver, G_solver: torch.optim Optimizers to use for training the
      discriminator and generator.
    - discriminator_loss, generator_loss: Functions to use for computing the generator and
      discriminator loss, respectively.
    - show_every: Show samples after every show_every iterations.
    - batch_size: Batch size to use for training.
    - noise_size: Dimension of the noise to use as input to the generator.
    - num_epochs: Number of epochs over the training dataset to use for training.
    """
    iter_count = 0
    for epoch in range(num_epochs):
        for x, _ in loader_train:
            if len(x) != batch_size:
                continue
            D_solver.zero_grad()
            real_data = x.type(dtype)
            logits_real = D(2* (real_data - 0.5)).type(dtype)

            g_fake_seed = sample_noise(batch_size, noise_size).type(dtype)
            fake_images = G(g_fake_seed).detach()
            logits_fake = D(fake_images.view(batch_size, 1, 28, 28))

            d_total_error = discriminator_loss(logits_real, logits_fake)
            d_total_error.backward()        
            D_solver.step()

            G_solver.zero_grad()
            g_fake_seed = sample_noise(batch_size, noise_size).type(dtype)
            fake_images = G(g_fake_seed)

            gen_logits_fake = D(fake_images.view(batch_size, 1, 28, 28))
            g_error = generator_loss(gen_logits_fake)
            g_error.backward()
            G_solver.step()

            if (iter_count % show_every == 0):
                print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count,d_total_error.item(),g_error.item()))
                imgs_numpy = fake_images.data.cpu().numpy()
                show_images(imgs_numpy[0:16])
                plt.show()
                print()
            iter_count += 1
# Make the discriminator
D = discriminator().type(dtype)

# Make the generator
G = generator().type(dtype)

# Use the function you wrote earlier to get optimizers for the Discriminator and the Generator
D_solver = get_optimizer(D)
G_solver = get_optimizer(G)
# Run it!
run_a_gan(D, G, D_solver, G_solver, discriminator_loss, generator_loss)

现在我们来看最小二乘GAN,它是对原始GAN损失函数的更新,更稳定的替代方法。 对于这一部分,我们要做的就是更改损失函数并重新训练模型。 我们将在本文中用生成器损耗实现方程式:
ℓ= 12∼()[((())-1)2]

和鉴别损失:
ℓ= 12∼data [(()-1)2] + 12∼()[((()))2]

def ls_discriminator_loss(scores_real, scores_fake):
    """
    Compute the Least-Squares GAN loss for the discriminator.
    
    Inputs:
    - scores_real: PyTorch Tensor of shape (N,) giving scores for the real data.
    - scores_fake: PyTorch Tensor of shape (N,) giving scores for the fake data.
    
    Outputs:
    - loss: A PyTorch Tensor containing the loss.
    """
    loss = None
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    loss = (scores_real - 1).pow(2).mean() + (scores_fake).pow(2).mean()
    loss /= 2

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    return loss

def ls_generator_loss(scores_fake):
    """
    Computes the Least-Squares GAN loss for the generator.
    
    Inputs:
    - scores_fake: PyTorch Tensor of shape (N,) giving scores for the fake data.
    
    Outputs:
    - loss: A PyTorch Tensor containing the loss.
    """
    loss = (scores_fake - 1).pow(2).mean()/2
    return loss


def test_lsgan_loss(score_real, score_fake, d_loss_true, g_loss_true):
    score_real = torch.Tensor(score_real).type(dtype)
    score_fake = torch.Tensor(score_fake).type(dtype)
    d_loss = ls_discriminator_loss(score_real, score_fake).cpu().numpy()
    g_loss = ls_generator_loss(score_fake).cpu().numpy()
    print("Maximum error in d_loss: %g"%rel_error(d_loss_true, d_loss))
    print("Maximum error in g_loss: %g"%rel_error(g_loss_true, g_loss))

test_lsgan_loss(answers['logits_real'], answers['logits_fake'],
                answers['d_loss_lsgan_true'], answers['g_loss_lsgan_true'])

D_LS = discriminator().type(dtype)
G_LS = generator().type(dtype)

D_LS_solver = get_optimizer(D_LS)
G_LS_solver = get_optimizer(G_LS)

run_a_gan(D_LS, G_LS, D_LS_solver, G_LS_solver, ls_discriminator_loss, ls_generator_loss)

你可能感兴趣的:(cs231n计算机视觉,神经网络,机器学习,网络)