基于numpy实现层次聚类并可视化

import numpy as np
from scipy.cluster.hierarchy import dendrogram
import matplotlib.pyplot as plt
index_m0,index_m1 = 0,0
lk = []
Y = np.array([1,4,9,16,25,36,49,64,81])
mod = Y.copy()
Mean = Y.mean()
Y = Y - Mean
Y = abs(Y)
dic = {}
for i in Y:
    dic[i] = 1
def fun(Y,Mean):#通过距离计算,输出最接近簇中心的两个点的索引
    Y0 = Y.copy()
    index_m0, index_m1 = 0,0
    index_m0 = list(Y0).index(min(Y0))
    Y0[index_m0] = 1e6
    index_m1 = list(Y0).index(min(Y0))
    return index_m0, index_m1

while dic[Y[-1]] != 9: #当集群点的数量小于节点数,循环直到所有点加入集群并停止
    index_m0,index_m1 = fun(Y,Mean)

    Y = list(Y)
    Y.append(Y[index_m0]+Y[index_m1])
    dic[Y[-1]] = dic[Y[index_m0]] + dic[Y[index_m1]] #在两个连续的聚类之后,添加距离以获得后续聚类的新点
    Y[index_m0] = 1e6 #将最近的两个点赋值为1e6,通过定义距离为无穷大来防止后续的重聚。
    Y[index_m1] = 1e6
    Y = np.array(Y)
    lk.append([index_m0,index_m1,Y[-1],dic[Y[-1]]]) #生成格式为[点,点,簇中心距离,簇点总数],便于后续可视化。
lk = np.array(lk)
dendrogram(lk)
plt.show()

基于numpy实现层次聚类并可视化_第1张图片

你可能感兴趣的:(python,数据分析小计,pandas,numpy,matplotlib,聚类,机器学习,python,层次聚类,numpy)