刷题网站:https://leetcode-cn.com/problems/container-with-most-water/submissions/
参考书籍:LeetCode 101:和你一起你轻松刷题(C++)
使用语言:python
记录刷题过程中的学到的一些知识点
坚持就是胜利鸭
class Solution:
def twoSum(self,nums, target):
#用len()方法取得nums列表长度
n = len(nums)
#创建一个空字典
d = {}
for x in range(n):
a = target - nums[x]
#字典d中存在nums[x]时
if nums[x] in d:
return d[nums[x]],x
#否则往字典增加键/值对
else:
d[a] = x
#边往字典增加键/值对,边与nums[x]进行对比
import math
a=[1,8,6,2,5,4,8,3,7]
n=len(a)
maxarea=0
for i in range(n):
for j in range(i+1,n):
maxarea=max(maxarea,min(a[i],a[j])*(j-i))
print(maxarea)
在初始时,左右指针分别指向数组的左右两端。然后每次移动数组较小的那个指针
import math
a=[1,8,6,2,5,4,8,3,7]
n=len(a)
maxarea=0
l=0
r=n-1
while l
import math
g=[1,2]
s=[1,2,3]
#贪心算法
#首先对孩子和饼干进行从小到大排序
#其次,给剩余孩子里最小饥饿的孩子分配最小能满足其要求的饼干
g.sort()
s.sort()
child=0
cookie=0
while child
贪心策略:每次遍历中,只考虑并更新相邻一侧的大小关系
import math
ratings=[1,2,2]
#把所有孩子的糖果数初始化为1
#先从左往右遍历一遍,如果右边孩子的评分高,右边的糖果更新为左边的糖果加一
#再从右往左遍历一遍,如果左边孩子的评分高,且左边孩子当前糖果数不大于右边孩子的糖果数,则左边孩子的糖果数更新为右边孩子的糖果数加一
num=[1]*len(ratings)
for i in range(1,len(ratings)):
if ratings[i]>ratings[i-1]:
num[i]=num[i-1]+1
for i in range(len(ratings)-1,0,-1):
if ratings[i]
import math
#贪心策略:优先保留结尾小且不相交的区间
intervals=[[1, 2], [2, 3], [3, 4],[1, 3]]
#先按第一个元素排序再按第二个元素排序
#intervals.sort(key=lambda x:(x[0],x[1]))
#先按组内排序,再按照第一个元素排序
#a.sort(key=lambda x: (x.sort(), x[0], x[1]))
#先按照结尾的大小进行增序排序,每次选择结尾最小且和前一个选择的区间不重叠的区间
intervals.sort(key=lambda x:x[1])
total=0
prev=intervals[0][1]
#如果这次的区间的开头小于上一个区间的结尾,则删除的个数增加一
for i in range(1,len(intervals)):
if intervals[i][0]
#贪心策略:每次都找3个连续的0
class Solution:
def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
length=len(flowerbed)
if length==1 and flowerbed[0]==0:
n-=1
else:
if flowerbed[0]==0 and flowerbed[1]==0:
n-=1
flowerbed[0]=1
for i in range(1,length-1):
if flowerbed[i]==0 and flowerbed[i-1]==0 and flowerbed[i+1]==0:
n-=1
flowerbed[i]=1
if flowerbed[length-1]==0 and flowerbed[length-2]==0:
n-=1
if n<=0:
return True
else:
return False
#本题先找到重叠分区的个数,然后用总共的分区减去重叠的个数即为无重叠的分区
class Solution:
def findMinArrowShots(self, points: List[List[int]]) -> int:
#贪心策略:优先保留结尾小且不相交的区间
#先按第一个元素排序再按第二个元素排序
#points.sort(key=lambda x:(x[0],x[1]))
#先按组内排序,再按照第一个元素排序
#a.sort(key=lambda x: (x.sort(), x[0], x[1]))
#先按照结尾的大小进行增序排序,每次选择结尾最小且和前一个选择的区间不重叠的区间
points.sort(key=lambda x:x[1])
total=0
prev=points[0][1]
#如果这次的区间的开头小于上一个区间的结尾,则删除的个数增加一
for i in range(1,len(points)):
if points[i][0]<=prev:
total+=1
else:
prev=points[i][1]
return len(points)-total
#统计一遍信息(个数,第一次出现位置,最后一次出现位置)
def last_index(s,letter):
num=s.count(letter)
for i in range(len(s)):
if s[i]==letter:
num-=1
if num==0:
return i
s="ababcbacadefegdehijhklij"
b=list(set(s))
c=[]
for i in s:
first=s.index(i)
last=last_index(s,i)
if [first,last] not in c:
c.append([first,last])
print(c)
d=[]
total=0
prev=c[0][1]
first=c[0][0]
#如果这次的区间的开头小于上一个区间的结尾,则删除的个数增加一
for i in range(1,len(c)):
if c[i][0]prev:
prev=c[i][1]
else:
d.append(c[i][0]-first)
prev=c[i][1]
first=c[i][0]
if i==len(c)-1:
d.append((prev-first)+1)
print(d)
#方法:简单的一次遍历
#若第i天的价格比第i-1天的价格高,就将i天与i-1天的价格差计入总利润中
prices = [7,1,5,3,6,4]
profit=0
for i in range(1,len(prices)):
if prices[i]>prices[i-1]:
profit+=(prices[i]-prices[i-1])
print(profit)
套路:一般这种数对,还涉及排序的,要么根据第一个元素正向排序,根据第二个元素反向排序;或者反过来
按照元素1进行降序排序,对于每个元素,在其之前的元素的个数就是大于等于他的元素
class Solution:
def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:
res = []
people = sorted(people, key = lambda x: (-x[0], x[1]))
for p in people:
if len(res) <= p[1]:
res.append(p)
elif len(res) > p[1]:
res.insert(p[1], p)
return res
参考:https://leetcode-cn.com/problems/queue-reconstruction-by-height/solution/xian-pai-xu-zai-cha-dui-dong-hua-yan-shi-suan-fa-g/
给你一个长度为 n 的整数数组,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列。
我们是这样定义一个非递减数列的: 对于数组中任意的 i (0 <= i <= n-2),总满足 nums[i] <= nums[i + 1]。
输入: nums = [4,2,3] 输出: true 解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。
遇到递减的情况要么将前面的元素缩小,要么将后面的元素放大
易错点:
贪心策略:每次只看连续的三个元素
[4,2,5]改4或者2
[1,4,2,5]改4或者2
[3,4,2,5]改2
贪心算法:
class Solution:
def checkPossibility(self, nums: List[int]) -> bool:
for i in range(1,len(nums)):
if nums[i]=nums[i-2]:
nums[i-1]=nums[i]
break
else:
nums[i]=nums[i-1]
break
for i in range(len(nums)-1):
if nums[i]>nums[i+1]:
return False
return True
numbers=[2,7,11,15]
target=9
def judge(numbers,target):
l=0
r=len(numbers)-1
while ltarget:
r-=1
else:
l+=1
print(judge(numbers,target))
nums1 = [1,2,3,0,0,0]
m = 3
nums2 = [2,5,6]
n = 3
p=m+n-1
m=m-1
n=n-1
while m>=0 and n>=0:
if nums1[m]>nums2[n]:
nums1[p]=nums1[m]
p-=1
m-=1
else:
nums1[p]=nums2[n]
p-=1
n-=1
while n>=0:
nums1[p]=nums2[n]
p-=1
n-=1
print(nums1)
class Solution:
def detectCycle(self, head: ListNode) -> ListNode:
fast,slow=head,head
while True:
if not(fast and fast.next):return
fast,slow=fast.next.next,slow.next
if fast==slow:break
fast=head
while fast!=slow:
fast,slow=fast.next,slow.next
return fast
import collections
s = "ADOBECODEBANC"
t = "ABC"
#滑动窗口
#首先定义一个字典,记录t中需要覆盖的字符及数目
need=collections.defaultdict(int)
for c in t:
need[c]+=1
#定义neednum记录需要的总共个数
neednum=len(t)
#定义左边界
i=0
res=(0,float('inf'))
for j,c in enumerate(s):
if need[c]>0:
neednum-=1
need[c]-=1
if neednum==0:#此时滑动窗口中包含了所有的t,尝试缩小左边界去除掉不需要的字符
while True:
c=s[i]
if need[c]==0:
break
need[c]+=1
i+=1#左边框向右移动
if j-ilen(s):
print("")
else:
print(s[res[0]:res[1]+1])
numbers=[i for i in range(0,int(c**0.5)+1)]
a=0
sum=0
b=len(numbers)-1
while a<=b:
sum=numbers[a]**2+numbers[b]**2
if c==sum:
return True
if sum
class Solution:
def judgeSquareSum(self, c: int) -> bool:
l=0
r=int(c**0.5+1)
while l<=r:
sum=l**2+r**2
if sum==c:
return True
elif sum>c:
r-=1
else:
l+=1
return False
s='aba'
#首先定义一个检查是否是回文字符串的函数
def judge(a,b):
while a
class Solution:
def findLongestWord(self, s: str, dictionary: List[str]) -> str:
dictionary.sort()
def check(d,s):
ii=0
jj=0
while jj
问题描述:给定一个字符串s,找到至多包含k个不同字符得最长子串的长度。
比如s=“cebea”,k=2,那么输出结果就是3,因为此时"ebe"满足条件:至多包含两个不同字符,且子串最长
比如s=“world”,k=4,那么输出结果就是4,因为"worl"和"orld"满足条件:至多包含4个不同字符,且子串最长
def lengthstring(s,k):
tmp=0#用于记录满足条件的最大值
for i in range(1,len(s)+1):
for j in range(len(s)-i+1):
print(s[j:j+i])
if len(set(s[j:j+i])) == k:#如果窗口中取集合后的不同字符就是k个
tmp = max(tmp,i)#更新tmp的值
print("tmp:{}".format(tmp))
return tmp #最后返回即可
print(lengthstring(s,k))
#一个hash表和一个左边界标记,遍历字符串将其加入到hash表中,不同字符多于k个了,就从左边开始删字符,知道hash表不同字符长度等于k.此时字符串的长度就是当前字符和左边界的距离。
from collections import defaultdict
#字典中存储的整型的值默认为0
hash=defaultdict(int)
max_num=0#用于存放最大值
start=0#滑动窗口的左端
#从字符串左开始遍历
for i in range(len(s)):
hash[s[i]]+=1
while len(hash)>k:
hash[s[start]]-=1
if hash[s[start]]==0:
del hash[s[start]]
start+=1
max_num=max(max_num,i-start+1)
print(max_num)
nums=[5,7,7,8,8,10]
target=8
def search(nums,target):
if len(nums)==0:
return [-1,-1]
elif nums[0]>target or nums[-1]nums[mid]:
l=mid+1
elif target=0 and nums[l-1]==target:
l-=1
while r+1<=len(nums)-1 and nums[r+1]==target:
r+=1
return [l,r]
return [-1,-1]
print(search(nums,target))
class Solution:
def search(self, nums: List[int], target: int) -> bool:
left=0
right=len(nums)-1
while left<=right:
mid=left+(right-left)//2
if nums[mid]==target:
return True
#10111 和 1110111101 这种。此种情况下 nums[start] == nums[mid],分不清到底是前面有序还是后面有序,将left++相当于去掉一个重复的项
if nums[left]==nums[mid]:
left+=1
elif nums[mid]<=nums[right]:#后半部分有序
if target>nums[mid] and target<=nums[right]:#target在后半部分
left=mid+1
else:#否则,去后半部分去找
right=mid-1
else:#前半部分有序
if target>=nums[left] and target
nums = [1,3,5]
def find(nums):
low,heih=0,len(nums)-1
while lownums[high]:
low=pivot+1
else:
high-=1
return nums[low]
class Solution:
def singleNonDuplicate(self, nums: List[int]) -> int:
if len(nums)==1:
return nums[0]
for i in range(0,len(nums),2):
if i+1==len(nums) or nums[i]!=nums[i+1]:
return nums[i]
需要对两个数组同时进行二分搜索
nums1=[1,2]
nums2=[3,4]
#返回中位数:奇数需要最后一次遍历的结果,偶数需要最后一次和上一次遍历的结果
#所以left和right,left保存上一次遍历的结果,right保存更新的最后一次的结果
def find(nums1,nums2):
m=len(nums1)
n=len(nums2)
length=m+n
aStart=0
bStart=0
left,right=-1,-1
for i in range(length//2+1):
left=right
if (aStart=n or nums1[aStart]
快速排序
归并排序
插入排序
冒泡排序
选择排序
#partition函数
def partition(nums, left, right):
pivot = nums[left]#初始化一个待比较数据
i,j = left, right
while(i < j):
while(i=pivot): #从后往前查找,直到找到一个比pivot更小的数
j-=1
nums[i] = nums[j] #将更小的数放入左边
while(i
class Solution:
def findKthLargest(self, nums: List[int], k: int) -> int:
nums.sort()
return nums[-k]
import collections
'''
方法一:直接排序
1、记录每个数字出现的次数
2、返回次数最高的k个数
'''
def topKFrequent(nums,k):
count=collections.Counter(nums)
print(count.most_common(k))
return [item[0] for item in count.most_common(k)]
nums = [1,1,1,1,2,2,3,4]
k = 2
print(topKFrequent(nums,k))
'''
方法二:堆排序
1、记录每个数字出现的次数
2、把数字和对应出现次数放入堆中
3、返回堆的前k大元素
'''
import heapq
def topKFrequent1(nums,k):
count=collections.Counter(nums)
heap=[(val,key) for key,val in count.items()]
print(heap)
return [item[1] for item in heapq.nlargest(k, heap)]
print(topKFrequent1(nums,k))
'''
方法三:推排序2
1、记录每个数字出现的次数
2、把数字和对应出现次数放入堆中(小顶堆)
3、如果堆已满(大小>=k)且当前数的次数比堆顶大,用当前元素替换堆顶元素
4、返回堆中的数字部分
'''
def topKFrequent2(nums,k):
count=collections.Counter(nums)
heap=[]
for key,val in count.items():
if len(heap)>=k:
if val>heap[0][0]:
heapq.heapreplace(heap,(val,jey))
else:
heapq.heappush(heap,(val,key))
return [item[1] for item in heap]
print(topKFrequent2(nums,k))
def topKFrequent(nums,k):
counter=collections.Counter(nums)
h=[]
for key,val in counter.items():
heapq.heappush(h,(val,key))
if len(h)>k:
heapq.heappop(h)
return [x[1] for x in h]
def frequencySort(s):
count=collections.Counter(s)
h=[]
for key,val in count.items():
h.append((val,key))
h.sort(key=lambda x:-x[0])
news=[]
for item in h:
news.append(item[0]*item[1])
news=''.join(news)
return news
s="raaeaedere"
print(frequencySort(s))
def sortColors(nums):
def swap(nums,index1,index2):
nums[index1],nums[index2]=nums[index2],nums[index1]
size=len(nums)
if size<2:
return
zero=0
two=size
i=0
while i
def removeDuplicates(nums):
size=len(nums)
if size<2:
return size
j=1
for i in range(1,size):
if nums[i]==nums[j-1]:
continue
else:
nums[j]=nums[i]
j+=1
return j
nums=[0,0,1,1,1,2,2,3,3,4]
print(removeDuplicates(nums))
def moveZeros(nums):
size=len(nums)
j=0
for i in range(0,size):
if nums[i]==0:
continue
else:
nums[j]=nums[i]
j+=1
while j
def removeElement(nums,val):
size=len(nums)
j=0
for i in range(0,size):
if nums[i]==val:
continue
else:
nums[j]=nums[i]
j+=1
return j
nums = [3,2,2,3]
val = 3
removeElement(nums,val)
print(nums)
def removeDuplicates(nums):
size=len(nums)
j=2
for i in range(2,size):
if nums[i]!=nums[j-2]:
nums[j]=nums[i]
j+=1
return j
nums=[0,0,1,1,1,1,2,3,3]
removeDuplicates(nums)
print(nums)
在搜索到一个新的结点时,立即对该新节点进行遍历;因此遍历需要用先入后出的栈来实现。
'''
1、从某位置出发,项四个方向探索相连的土地
2、每探寻一块土地,计数加一
3、确保每块土地只会被探寻一次
'''
'''
从每一个陆地出发,遍历该陆地所在的岛屿
在遍历某一岛屿的时候:
1、从隶属于该岛屿的某一块陆地出发,向四个方向递归地DFS
2、每次递归对下标进行判断,以区域的边界作为递归边界
3、为保证每块陆地只访问一次,将已访问过的陆地置0
4、递归地返回整块岛屿的面积
'''
def dfs(grid,i,j):
if i < 0 or j < 0 or i == len(grid) or j == len(grid[0]) or grid[i][j] != 1:
return 0
grid[i][j]=0
ans=1
for di,dj in [[0,1],[0,-1],[1,0],[-1,0]]:
nexti,nextj=i+di,j+dj
ans+=dfs(grid,nexti,nextj)
return ans
def maxarea(grid):
ans=0
#从每一个陆地出发,遍历该陆地所在的岛屿
for i,l in enumerate(grid):
for j,n in enumerate(l):
ans=max(dfs(grid,i,j),ans)
return ans
grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
#用栈实现深度优先算法
#把想要遍历的土地放在栈里,然后再取出这些土地的时候访问他们
def maxarea(grid):
ans=0
for i,l in enumerate(grid):
for j,n in enumerate(l):
cur=0
stack=[(i,j)]
while stack:
cur_i,cur_j=stack.pop()
if cur_i<0 or cur_j<0 or cur_i==len(grid) or cur_j==len(grid[0]) or grid[cur_i][cur_j]!=1:
continue
cur+=1
grid[cur_i][cur_j]=0
for di,dj in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
next_i, next_j = cur_i + di, cur_j + dj
stack.append((next_i, next_j))
ans=max(ans,cur)
return ans
print(maxarea(grid))
#广度优先搜索
#每次从队首取出土地,并将接下来想要遍历的土地放在队尾
import collections
def maxarea(grid):
ans=0
for i,l in enumerate(grid):
for j,n in enumerate(l):
cur=0
q=collections.deque([(i,j)])
while q:
cur_i,cur_j=q.popleft()
if cur_i<0 or cur_j<0 or cur_i==len(grid) or cur_j==len(grid[0]) or grid[cur_i][cur_j]!=1:
continue
cur+=1
grid[cur_i][cur_j]=0
for di,dj in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
next_i, next_j = cur_i + di, cur_j + dj
q.append((next_i, next_j))
ans=max(ans,cur)
return ans
print(maxarea(grid))
def findcity(isConnected):
city=0
for i in range(1,len(isConnected)):
for j in range(i):
if isConnected[i][j]==1:
city+=1
if len(isConnected)-city==0:
return 1
else:
return len(isConnected)-city
isConnected = [[1,0,0],[0,1,0],[0,0,1]]
print(findcity(isConnected))
heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
if not heights or not heights[0]:return []
#从两个大洋开始向上流
res1=set()#流向太平洋的位置
res2=set()#流向大西洋的位置
row=len(heights)
col=len(heights[0])
def dfs(i,j,res):
res.add((i,j))
for di,dj in [[0,1],[0,-1],[1,0],[-1,0]]:
nexti,nextj=di+i,dj+j
if 0<=nexti|
#并查集
'''
并--合并
查--查找
集--字典,合并集合中的元素,查找集合中的元素
并查集--应用:连通分量
'''
class UnionFind:
def __init__(self):
#记录每个节点的父节点
self.father={}
def find(self,x):
#查找根节点--如果节点的父结点不为空,那就不断迭代
root=x
while self.father[root]!=None:
root=self.father[root]
#路径压缩--如果树很深,需要做一下路径压缩,把树的深度固定为二
while x!=root:
original_father=self.father[x]
self.father[x]=root
x=original_father
def merge(self,x,y,val):
#合并两个节点
root_x,root_y=self.find(x),self.find(y)
if root_x!=root_y:
self.father[root_x]=root_y
def is_connected(self,x,y):
#判断两节点是否相连
return self.find(x)==self.find(y)
def add(self,x):
#添加新节点
if x not in self.father:
self.father[x]=None
class UnionFind:
def __init__(self):
self.father = {}
# 额外记录集合的数量
self.num_of_sets = 0
def find(self,x):
root = x
while self.father[root] != None:
root = self.father[root]
while x != root:
original_father = self.father[x]
self.father[x] = root
x = original_father
return root
def merge(self,x,y):
root_x,root_y = self.find(x),self.find(y)
if root_x != root_y:
self.father[root_x] = root_y
# 集合的数量-1
self.num_of_sets -= 1
def add(self,x):
if x not in self.father:
self.father[x] = None
# 集合的数量+1
self.num_of_sets += 1
class Solution:
def findCircleNum(self, M: List[List[int]]) -> int:
uf = UnionFind()
for i in range(len(M)):
uf.add(i)
for j in range(i):
if M[i][j]:
uf.merge(,j)
return uf.num_of_sets
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EgtvSYSo-1650247907471)(C:\Users\Tian\AppData\Roaming\Typora\typora-user-images\image-20220403101255877.png)]
#并查集
'''
并--合并
查--查找
集--字典,合并集合中的元素,查找集合中的元素
并查集--应用:连通分量
'''
class UnionFind:
def __init__(self):
#记录每个节点的父节点
self.father={}
def find(self,x):
if self.father[x]!=x:
self.father[x]=self.find(self.father[x])
return self.father[x]
def merge(self,x,y):
#合并两个节点
root_x,root_y=self.find(x),self.find(y)
if root_x==root_y:
return False
else:
self.father[y]=x
return True
def is_connected(self,x,y):
#判断两节点是否相连
return self.find(x)==self.find(y)
def add(self,x):
#添加新节点
if x not in self.father:
self.father[x]=x
#初始时将结点的父亲定义为自身,在合并时如果两个节点的父亲时相同的,则属于同一个子集也就是有环存在
def tree(edges,n):
a=UnionFind()
for i in range(n):
a.add(i)
for edge in edges:
if a.merge(edge[0],edge[1])==False:
return False
par=a.find(0)
for i in range(1,n):
if par!=a.find(i):
return False
return True
edges = [[0,1], [1,2], [2,3], [1,3], [1,4]]
n=5
print(tree(edges,n))
class UnionFind:
def __init__(self):
#记录每个节点的父节点
self.father={}
self.num=0
def find(self,x):
if self.father[x]!=None:
self.father[x]=self.find(self.father[x])
return self.father[x]
def merge(self,x,y):
#合并两个节点
root_x,root_y=self.find(x),self.find(y)
if root_x!=root_y:
self.father[y]=x
self.num-=1
def is_connected(self,x,y):
#判断两节点是否相连
return self.find(x)==self.find(y)
def add(self,x):
#添加新节点
if x not in self.father:
self.father[x]=None
self.num+=1
#初始时将结点的父亲定义为自身,在合并时如果两个节点的父亲时相同的,则属于同一个子集也就是有环存在
def tree(edges,n):
a=UnionFind()
for edge in edges:
a.add(edge[0])
a.add(edge[1])
a.merge(edge[0],edge[1])
return a.num
edges = [[0,1], [1,2],[2,3] ,[3,4]]
n=5
print(tree(edges,n))
def gridnum(grid):
ans=[]
for i,l in enumerate(grid):
for j,n in enumerate(l):
cur=0
stack=[(i,j)]
while stack:
cur_i,cur_j=stack.pop()
if cur_i<0 or cur_j<0 or cur_i==len(grid) or cur_j==len(grid[0]) or grid[cur_i][cur_j]!=1:
continue
cur+=1
grid[cur_i][cur_j]=0
for di,dj in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
next_i, next_j = cur_i + di, cur_j + dj
stack.append((next_i, next_j))
ans.append(cur)
num=0
for i in ans:
if i!=0:
num+=1
return num
grid=[[1,1,1,1,0],
[1,1,0,1,0],
[1,1,0,0,0],
[0,0,0,0,0]]
grid1=[[1,1,0,0,0],
[1,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,1]]
print(gridnum(grid1))
class UnionFind:
def __init__(self):
"""
记录每个节点的父节点
记录每个节点到根节点的权重
"""
self.father = {}
self.value = {}
def find(self,x):
"""
查找根节点
路径压缩
更新权重
"""
root = x
# 节点更新权重的时候要放大的倍数
base = 1
while self.father[root] != None:
root = self.father[root]
base *= self.value[root]
while x != root:
original_father = self.father[x]#保存上一个节点
##### 离根节点越远,放大的倍数越高
self.value[x] *= base
base /= self.value[original_father]
#####
self.father[x] = root#改变当前父亲节点
x = original_father
return root
def merge(self,x,y,val):
"""
合并两个节点
"""
root_x,root_y = self.find(x),self.find(y)
if root_x != root_y:
self.father[root_x] = root_y
##### 四边形法则更新根节点的权重
self.value[root_x] = self.value[y] * val / self.value[x]
def is_connected(self,x,y):
"""
两节点是否相连
"""
return x in self.value and y in self.value and self.find(x) == self.find(y)
def add(self,x):
"""
添加新节点,初始化权重为1.0
"""
if x not in self.father:
self.father[x] = None
self.value[x] = 1.0
def calcEquation(equations, values, queries):
uf = UnionFind()
for (a,b),val in zip(equations,values):
uf.add(a)
uf.add(b)
uf.merge(a,b,val)
res = [-1.0] * len(queries)
for i,(a,b) in enumerate(queries):
if uf.is_connected(a,b):
res[i] = uf.value[a] / uf.value[b]
return res
equations = [["a","b"],["b","c"]]
values = [2.0,3.0]
queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
print(calc(equations,values,queries))
class UnionFind:
def __init__(self):
self.father = {}
# 根节点所在集合的所有账户
self.accounts = {}
def find(self,x):
if not self.father[x]: return x
# 递归的路径压缩处理
self.father[x] = self.find(self.father[x])
return self.father[x]
def merge(self,x,y):
root_x,root_y = self.find(x),self.find(y)
if root_x == root_y:
return
# 按秩合并,更新根节点和所属的账户
if len(self.accounts[root_x]) > len(self.accounts[root_y]):
self.father[root_y] = root_x
self.accounts[root_x] += self.accounts[root_y]
del self.accounts[root_y]
else:
self.father[root_x] = root_y
self.accounts[root_y] += self.accounts[root_x]
del self.accounts[root_x]
def add(self,x):
if x not in self.father:
self.father[x] = None
self.accounts[x] = [x]
def accountsMerge(accounts):
uf=UnionFind()
for account in accounts:
#找到性名和主账户
name,master=account[0],account[1]
uf.add((name,master))
#和其余的账户一一合并
account=list(set(account[2:]))
for i in range(len(account)):
uf.add((name,account[i]))
uf.merge((name,master),(name,account[i]))
res=[]
for key,value in uf.father.items():
#是根节点
if not value:
#添加user
usr=[uf.accounts[key][0][0]]
acc=[]
#添加账户
for account in uf.accounts[key]:
acc.append(account[1])
res.append(usr+sorted(acc))
return res
#深度优先搜索
import collections
class Solution:
def build_graph(self,accounts):
"""
建图
"""
graph = collections.defaultdict(list)
for account in accounts:
master = account[1]
# 对剩余账户做一个去重
for email in list(set(account[2:])):
graph[master].append(email)
graph[email].append(master)
return graph
def dfs(self,email,graph,visited,emails):
"""
深搜遍历
"""
# 已经访问过的就剪枝
if email in visited:
return
visited.add(email)
emails.append(email)
# 对邻居节点继续深搜
for neighbor in graph[email]:
self.dfs(neighbor,graph,visited,emails)
def accountsMerge(self, accounts):
graph = self.build_graph(accounts)
res = []
visited = set()
for account in accounts:
emails = []
self.dfs(account[1],graph,visited,emails)
if emails:
res.append([account[0]] + sorted(emails))
return res
accounts = [["John", "[email protected]", "[email protected]"], ["John", "[email protected]"], ["John", "[email protected]", "[email protected]"], ["Mary", "[email protected]"]]
a=Solution()
print(a.accountsMerge(accounts))
def dfs(nums,size,depth,path,used,res):
if depth==size:
res.append(path[:])
return
for i in range(size):
if not used[i]:
used[i]=True
path.append(nums[i])
dfs(nums,size,depth+1,path,used,res)
used[i]=False#状态重置
path.pop()#恢复现场
def permute(nums):
size=len(nums)
if len(nums)==0:
return []
used=[False for _ in range(size)]
res=[]
dfs(nums,size,0,[],used,res)
return res
nums=[1,2,3]
print(permute(nums))
会搜索到一些不需要的解,可以提前剪枝
class Solution:
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
def dfs(nums,size,depth,path,used,res):
if depth==size:
res.append(path[:])
return
for i in range(size):
if not used[i]:
if i>0 and nums[i]==nums[i-1] and not used[i-1]:
continue
used[i]=True
path.append(nums[i])
dfs(nums,size,depth+1,path,used,res)
used[i]=False#状态重置
path.pop()
size=len(nums)
if len(nums)==0:
return []
nums.sort()
used=[False for _ in range(size)]
res=[]
dfs(nums,size,0,[],used,res)
return res
def combinationSum( candidates,target):
def dfs(candidates, begin, size, path, res, target):
if target < 0:
return
if target == 0:
res.append(path)
return
for index in range(begin, size):
dfs(candidates, index, size, path + [candidates[index]], res, target - candidates[index])
size = len(candidates)
if size == 0:
return []
path = []
res = []
dfs(candidates, 0, size, path, res, target)
return res
candidates = [1,2]
target = 4
print(combinationSum(candidates,target))
回溯算法入门级详解 + 练习(持续更新) - 全排列 - 力扣(LeetCode) (leetcode-cn.com)
def combinationSum( candidates,target):
def dfs(candidates, begin, size, path, res, target):
if target < 0:
return
if target == 0:
path.sort()
if path not in res:
res.append(path)
return
for index in range(begin, size):
if index > begin and candidates[index - 1] == candidates[index]:
continue
dfs(candidates, index+1, size, path + [candidates[index]], res, target - candidates[index])
size = len(candidates)
if size == 0:
return []
path = []
res = []
dfs(candidates, 0, size, path, res, target)
return res
candidates = [1,1]
target = 2
print(combinationSum(candidates,target))
这个避免重复当思想是在是太重要了。
这个方法最重要的作用是,可以让同一层级,不出现相同的元素。即
1
/ \
2 2 这种情况不会发生 但是却允许了不同层级之间的重复即:
/ \
5 5
例2
1
/
2 这种情况确是允许的
/
2
为何会有这种神奇的效果呢?
首先 cur-1 == cur 是用于判定当前元素是否和之前元素相同的语句。这个语句就能砍掉例1。
可是问题来了,如果把所有当前与之前一个元素相同的都砍掉,那么例二的情况也会消失。
因为当第二个2出现的时候,他就和前一个2相同了。
那么如何保留例2呢?
那么就用cur > begin 来避免这种情况,你发现例1中的两个2是处在同一个层级上的,
例2的两个2是处在不同层级上的。
在一个for循环中,所有被遍历到的数都是属于一个层级的。我们要让一个层级中,
必须出现且只出现一个2,那么就放过第一个出现重复的2,但不放过后面出现的2。
第一个出现的2的特点就是 cur == begin. 第二个出现的2 特点是cur > begin.
def combinationSum(n,k):
def dfs(path, res, k,n,i):
if k == 0:
print(path)
path.sort()
if path not in res:
res.append(path[:])
return
for index in range(i,n):
path.append(index+1)
dfs(path , res, k-1,n,index+1)
path.pop()
path = []
res = []
used=[False for _ in range(n)]
dfs(path, res,k,n,0)
return res
print(combinationSum(4,2))
def combinationSum(nums):
def dfs(path,res, n,i):
if path not in res:
res.append(path[:])
for index in range(i,n):
dfs(path+[nums[index]] , res,n,index+1)
path = []
res = []
n=len(nums)
dfs(path, res,n,0)
return res
nums=[4,1,0]
print(combinationSum(nums))
def dfs(path,res, n,i):
if path not in res:
res.append(path[:])
for index in range(i,n):
if nums[index-1]==nums[index] and index>i:
continue
dfs(path+[nums[index]] , res,n,index+1)
path = []
res = []
nums.sort()
n=len(nums)
dfs(path, res,n,0)
return res
#0!=1表示没有数可选,即表示到达叶子节点了,排列数只剩下1个
#可以先把阶乘算好,放到一共数组里,根据索引直接获得阶乘值
def getPermutation(n, k):
def dfs(n, k, index, path):
cnt = factorial[n - 1 - index]
for i in range(1, n + 1):
if used[i]:
continue
if cnt < k:
k -= cnt
continue
path.append(i)
used[i] = True
dfs(n, k, index + 1, path)
# 注意:这里要加 return,后面的数没有必要遍历去尝试了
return
if n == 0:
return ""
used = [False for _ in range(n + 1)]
path = []
factorial = [1 for _ in range(n + 1)]
for i in range(2, n + 1):
factorial[i] = factorial[i - 1] * i
dfs(n, k, 0, path)
return ''.join([str(num) for num in path])
print(getPermutation(4,9))
def restireIpAddresses(s):
def dfs(s,idx,path,res):
if idx>4:
return
if idx==4 and not s:
res.append(path[:-1])
return
for i in range(len(s)):
#当s的首字符为'0'时,可以直接将'0'作为IP地址中四个整数之一
#当s的首字符不为0时,需要保证s[:i+1]处于IP地址整数的范围之内
if s[:i+1]=='0' or (s[0]!='0' and 0
def floodFill(image,sr,sc,newColor):
def dfs(image,src,newColor,i,j):
if i<0 or i==len(image) or j<0 or j==len(image[0]) or image[i][j]==newColor:
return image
if image[i][j]!=src:
return image
image[i][j]=newColor
for di,dj in [[0,1],[0,-1],[1,0],[-1,0]]:
nexti,nextj=i+di,j+dj
image=dfs(image,src,newColor,nexti,nextj)
return image
src=image[sr][sc]
dfs(image,src,newColor,sr,sc)
return image
image = [[0,0,0],[0,0,0]]
print(floodFill(image,0,0,2))
#寻找和边界联通的O
def solve(board):
if not board or not board[0]:
return
row=len(board)
col=len(board[0])
def dfs(board,i,j):
board[i][j]='#'
for di,dj in [[0,1],[0,-1],[1,0],[-1,0]]:
nexti,nextj=i+di,j+dj
if 0<=nexti|
要注意回溯
def exist(board,word):
word=list(word)
m=len(board)
n=len(board[0])
mark=[[ 0 for _ in range(n)] for _ in range(m)]
def dfs(idx,i,j):
#idx下一个要查找的词
if idx==len(word):
return True
for di,dj in [[0,1],[0,-1],[1,0],[-1,0]]:
nexti,nextj=i+di,j+dj
if 0<=nexti
def letterCombinations(digits):
if not digits:return []
phone = {'2':['a','b','c'],
'3':['d','e','f'],
'4':['g','h','i'],
'5':['j','k','l'],
'6':['m','n','o'],
'7':['p','q','r','s'],
'8':['t','u','v'],
'9':['w','x','y','z']}
res=[]
def dfs(i,digit):
if 0==len(digit):
res.append(i)
return
for letter in phone[digit[0]]:
dfs(i+letter,digit[1:])
dfs('',digits)
return res
digits='23'
print(letterCombinations(digits))
def letterCase(s):
#两种选择:转换和不转换
def dfs(path,i):
if i==len(s):
res.append(path)
return
if s[i].isdigit():
dfs(path+s[i],i+1)
else:
if s[i].islower():
dfs(path+s[i].upper(),i+1)
else:
dfs(path+s[i].lower(),i+1)
dfs(path+s[i],i+1)
res=[]
dfs('',0)
return res
s='a1b2'
print(letterCase(s))
#当前左右括号都有大于0个可以使用的时候,才能分支
#左分支:左括号>0
#右分支:左括号《右分支
#当左右括号==0时截至
def generate(n):
left=n
right=n
res=[]
def dfs(path,left,right):
if left==0 and right==0:
res.append(path)
return
if right>left:
dfs(path+')',left,right-1)
if left>0:
dfs(path+'(',left-1,right)
dfs('',left,right)
return res
n=3
print(generate(n))
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UX6avcSV-1650247907472)(C:\Users\Tian\AppData\Roaming\Typora\typora-user-images\image-20220311090132764.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WnfiWG7g-1650247907472)(C:\Users\Tian\AppData\Roaming\Typora\typora-user-images\image-20220311090103762.png)]
def solveNQueens(n):
res=[]
def dfs(m,path):
if len(path)==n:
res.append(path)
return
for i in range(n):
#i是行下标,m是列下标
if lie[i]==0 and zheng[i-m+n-1]==0 and fu[i+m-1]==0:
#同一列没有,第i-m+n-1个正斜线没有,第i+m-1个负斜线没有
lie[i],zheng[i-m+n-1],fu[i+m-1]=1,1,1
cpath=['.'*i+'Q'+'.'*(n-i-1)]
dfs(m+1,path+cpath)
lie[i],zheng[i-m+n-1],fu[i+m-1]=0,0,0
lie = [0 for j in range(n)]
zheng = [0 for j1 in range(2 * n - 1)]
fu = [0 for j2 in range(2 * n - 1)]
dfs(0,[])
return res
print(solveNQueens(1))
def solve(board):
row=[set(range(1,10)) for _ in range(9)]
col=[set(range(1,10)) for _ in range(9)]
block=[set(range(1,10)) for _ in range(9)]
empty=[]
for i in range(9):
for j in range(9):
if board[i][j]!='.':
val=int(board[i][j])
row[i].remove(val)
col[j].remove(val)
block[(i//3)*3+j//3].remove(val)
else:
empty.append((i,j))
def backtrack(iter):
if iter==len(empty):
return True
i,j=empty[iter]
b=(i//3)*3+j//3
for val in row[i] &col[j]&block[b]:
row[i].remove(val)
col[j].remove(val)
block[b].remove(val)
board[i][j] = str(val)
if backtrack(iter+1):
return True
row[i].add(val) # 回溯
col[j].add(val)
block[b].add(val)
backtrack(0)
return board
board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
print(solve(board))
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def binaryTreePaths(self, root: Optional[TreeNode]) -> List[str]:
def construct_paths(root, path):
if not root:return
path += str(root.val)
if not root.left and not root.right: #叶子结点
paths.append(path)
else:
path += '->'
construct_paths(root.left, path)
construct_paths(root.right, path)
paths = []
construct_paths(root, '')
return paths
def findminheighttrees(edges):
if n==2:
return [0,1]
if n==1:
return [0]
adjs=defaultdict(list)#创建一个错误的话会返回默认值的字典
for x in edges:#图的邻接表表示法,基本上是模板
adjs[x[0]].append(x[1])
adjs[x[1]].append(x[0])
#BFS队列:初始队列放入初始元素,size=1为叶子,入队
queue=deque()
for key,value in adjs.items():
if len(value)==1:
queue.append(key)
while(queue):
size=len(queue)
n=n-size
for _ in range(size):
#能遍历到v时,说明v只有一条邻边
v=queue.popleft()
v_adj=adjs[v].pop()
adjs[v_adj].remove(v)
if len(adjs[v_adj])==1:
queue.append(v_adj)
if n==1:
return [queue.popleft()]
if n==2:
return [queue.popleft(),queue.popleft()]
目标-》最终状态:使用动态搜索
自下而上,先解决子问题再解决父问题
目标-》输出所有路径:带有状态记录的优先搜索
自上而下,从父问题搜索到子问题,若重复搜索到同一子问题则进行状态记录,防止重复记录
def climbstairs(n):
if n==0 or n==1:
return 1
return self.climbStairs(n-1)+self.climbStairs(n-2)
def climbstairs(n):
def dfs(i,memo):
if i==0 or i==1:
return 1
if memo[i]==-1:
memo[i]=dfs(i-1,memo)+dfs(i-2,memo)
return memo[i]
return dfs(n,[-1]*(n+1))
def climbStairs(n):
dp=[0]*(n+1)
dp[0]=dp[1]=1
for i in range(2,n+1):
dp[i]=dp[i-1]+dp[i-2]
return dp[-1]
def climbStairs(n):
a=b=1
for i in range(2,n+1):
a,b=b,a+b
return b
def rob(nums):
size=len(nums)
dp=[0]*(size)
if size==0:
return 0
if size==1:
return nums[0]
dp[0]=nums[0]
dp[1]=max(nums[1],dp[0])
for i in range(2,size):
dp[i]=max(dp[i-1],nums[i]+dp[i-2])
return dp[-1]
nums=[1,2,3,1]
print(rob(nums))
def rob(nums):
size=len(nums)
if size==0:
return 0
if size==1:
return nums[0]
first,second=nums[0],max(nums[1],nums[0])
for i in range(2,size):
first,second=second,max(first+nums[i],second)
return second
nums=[1,2,3,1]
print(rob(nums))
def minPathsum(grid):
#单元格(i,j)只能从左方或者上方走到,只需考虑左边界和上边界
for i in range(len(grid)):
for j in range(len(grid[0])):
if i==0 and j==0:
continue
elif i==0:
grid[i][j]=grid[i][j-1]+grid[i][j]
elif j==0:
grid[i][j]=grid[i-1][j]+grid[i][j]
else:
grid[i][j]=min(grid[i-1][j],grid[i][j-1])+grid[i][j]
return grid[-1][-1]
grid = [[1,3,1],[1,5,1],[4,2,1]]
print(minPathsum(grid))
def updatematrix(mat):
m,n=len(mat),len(mat[0])
dp = [[10**9] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if mat[i][j]==0:
dp[i][j]=0
for i in range(m):
for j in range(n):
if j>0:
dp[i][j]=min(dp[i][j],dp[i][j-1]+1)
if i>0:
dp[i][j]=min(dp[i][j],dp[i-1][j]+1)
for i in range(m-1,-1,-1):
for j in range(n-1,-1,-1):
if j
def maximal(matrix):
#如果该位置是0,则dp(i,j)=0,因为当前位置不可能在由1组成的正方形中
#如果该位置的值是1,则dp(i,j)的值由其上方、左方和左上方的三个相邻位置的dp决定
maxside=0
m,n=len(matrix),len(matrix[0])
dp=[[0]*n for _ in range(m)]
for i in range(m):
for j in range(n):
if matrix[i][j]=='1':
if i==0 or j==0:
dp[i][j]=1
else:
dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1
maxside=max(maxside,dp[i][j])
return maxside*maxside
matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
print(maximal(matrix))
def numsquares(n):
#初始化dp[0,1,2,..,n]长度为n+1,最多次数就是全由1构成的
dp=[i for i in range(n+1)]
for i in range(2,n+1):
for j in range(1,int(i**0.5)+1):
#遍历所有平方数小于i的数j,始终保存所有可能情况中的最小值
dp[i]=min(dp[i],dp[i-j*j]+1)
return dp[-1]
print(numsquares(12))
#f[i]为前i个字符的解码方案数
'''
f[i]=f[i-1] 1<=a<=9
f[i]=f[i-2] 10<=b<=26
f[i]=f[i-1]+f[i-2] 1<=a<=9,10<=b<=26
'''
#由于题目存在前导零,而前导零属于无效item,追加空格既可以避免讨论前导零,也能使下标从1开始
def numdecoding(s):
n=len(s)
s=' '+s
f=[0]*(n+1)
f[0]=1
for i in range(1,n+1):
#a代表当前位置单独形成item
#b代表当前位置与前一位置共同形成item
a = ord(s[i]) - ord('0')
b = ( ord(s[i - 1]) - ord('0') ) * 10 + ord(s[i]) - ord('0')
if 1<=a<=9:
f[i]=f[i-1]
if 10<=b<=26:
f[i]+=f[i-2]
return f[n]
print(numdecoding('226'))
def wordBreak(s,wordDict):
#dp[i]为前i个字符在wordDict中
n=len(s)
dp=[False]*(n+1)
dp[0]=True
for i in range(n):
for j in range(i+1,n+1):
#dp[i]=True表示s的前i位可以表示
#s[i,...,j)出现在wordDict中,表示s的前j位可以表示
if dp[i] and s[i:j] in wordDict:
dp[j]=True
return dp[-1]
def lengthof(nums):
n=len(nums)
dp=[1]*(n+1)
#dp[i]表示以i结尾的子序列的长度
#对于每一个位置,如果其之前的某个位置j所对于的数字小于位置i所对应的数字
for i in range(0,n):
for j in range(0,i):
if nums[i]>nums[j]:#nums[i]可以接在nums[j]之后
dp[i]=max(dp[j]+1,dp[i])
return max(dp)
nums=[7,7,7,7,7,7,7]
print(lengthof(nums))
def longestCommon(text1,text2):
m=len(text1)
n=len(text2)
#dp[i][j]表示到第一个字符串位置i为止,到第二个字符串位置j为止,最长的公共子序列长度
dp=[[0]*(n+1) for _ in range(m+1)]
for i in range(1,m+1):
for j in range(1,n+1):
if text1[i-1]==text2[j-1]:
dp[i][j]=dp[i-1][j-1]+1
else:
dp[i][j]=max(dp[i-1][j],dp[i][j-1])
return dp[m][n]
text1='abcde'
text2='ace'
print(longestCommon(text1,text2))
def canpartition(nums):
if sum(nums)%2!=0:
return False
allsum=sum(nums)//2
if max(nums)>allsum:
return False
dp=[[False]*(allsum+1) for _ in range(len(nums))]
dp[0][nums[0]]=True
for i in range(1,len(nums)):
for j in range(1,allsum+1):
if j>=nums[i]:
dp[i][j]=dp[i-1][j]|dp[i-1][j-nums[i]]
else:
dp[i][j]=dp[i-1][j]
return dp[-1][-1]
nums= [1,1,1,1,1]
print(canpartition(nums))
#多维的0-1背包问题
#dp[i][j]最多有i个0和j个1的strs的最大子集的大小
def findmaxform(strs,m,n):
dp=[[0]*(n+1) for _ in range(m+1)]
for strr in strs:
count0=strr.count('0')
count1=strr.count('1')
for i in range(m,count0-1,-1):
for j in range(n,count1-1,-1):
dp[i][j]=max(dp[i][j],dp[i-count0][j-count1]+1)
return dp[m][n]
strs=["10", "0001", "111001", "1", "0"]
print(findmaxform(strs,5,3))
def coinChange(coins,amount):
dp=[amount+2]*(amount+1)
dp[0]=0
for i in range(1,amount+1):
for coin in coins:
if i>=coin:
dp[i]=min(dp[i],dp[i-coin]+1)
return dp[amount] if dp[amount]!=amount+2 else -1
coins=[2]
print(coinChange(coins,11))
def minsteps(n):
#dp[i]表示延展到长度i的最少操作次数
#对于每一个位置j,如果j可以被i整除,dp[i]=dp[j]+dp[i/j]
dp=[float('inf')]*(n+1)
dp[1]=0
for i in range(2,n+1):
for j in range(1,i):
if i%j==0:
dp[i]=min(dp[i],dp[j]+i//j)
return dp[-1]
print(minsteps(3))
def maxprofit(prices):
minp=prices[0]
dp=[0]*len(prices)
dp[0]=0
for i in range(1,len(prices)):
dp[i]=max(prices[i]-minp,dp[i-1])
if minp>prices[i]:
minp=prices[i]
return dp[-1]
prices=[7,6,4,3,1]
print(maxprofit(prices))
def maxProfit(prices):
if not prices:
return 0
n=len(prices)
#dp[i][0]第i天不持有股票,且当天没卖出
#dp[i][1]第i天不持有股票,当天卖出了
#dp[i][2]第i天持有股票,此时的最大利润
dp=[[0,0,0] for i in range(n)]
dp[0]=[0,0,-prices[0]]
for i in range(1,n):
#"0"状态下,昨天没有股票/昨天有股票,但是卖出了
dp[i][0]=max(dp[i-1][0],dp[i-1][1])
#“1”状态下
dp[i][1]=dp[i-1][2]+prices[i]
#"2"状态下,有股票可能是当前买入的,且前一天不能是状态1;前一天就持股dp[i-1][2]
dp[i][2]=max(dp[i-1][0]-prices[i],dp[i-1][2])
return max(dp[-1])
prices=[1,2,3,0,2]
print(maxProfit(prices))
def maxprofit(prices,fee):
'''
dp[i][0]表示第i天,持有股票-当天买入或者前i天买入
dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i])
dp[i][1]表示第i天没有股票--之前卖出或者当天卖出
dp[i][1]=max(dp[i-1][0]-fee+prices[i],dp[i-1][1])
'''
n=len(prices)
if n==1:
return 0
dp=[[0,0] for i in range(n)]
dp[0]=[-prices[0],0]
for i in range(1,n):
dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i])
dp[i][1]=max(dp[i-1][0]-fee+prices[i],dp[i-1][1])
return dp[-1][-1]
prices=[1,3,7,5,10,3]
print(maxprofit(prices,3))
#使用变量进行状态转移
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
n = len(prices)
sell, buy = 0, -prices[0]
for i in range(1, n):
sell, buy = max(sell, buy + prices[i] - fee), max(buy, sell - prices[i])
return sell
#2、 打家劫舍II
#环形排列意味着第一个房子和最后一个房子只能选择一个偷窃
#偷窃第一个房子nums[:n-2]
#偷窃最后一个房子nums[1:]
def rob(nums):
#dp[i]表示第i个房屋的最高金额
'''
如果偷dp[i]=dp[i-2]+nums[i]
如果不偷dp[i]=dp[i-1]
'''
n=len(nums)
dp1=[0]*(n)
dp2=[0]*(n)
if n==1:
return nums[0]
#偷第一间房子,当前房子收益nums[i-1]
dp1[0],dp1[1]=0,nums[0]
#偷最后一间房子,当前房子收益nums[i]
dp2[0],dp2[1]=0,nums[1]
for i in range(2,n):
dp1[i]=max(dp1[i-2]+nums[i-1],dp1[i-1])
dp2[i]=max(dp2[i-2]+nums[i],dp2[i-1])
return max(dp1+dp2)
nums=[4,1,2,7,5,3,1]
print(rob(nums))
def maxsub(nums):
n=len(nums)
dp=[0]*n
dp[0]=nums[0]
if n==1:
return nums[0]
for i in range(1,n):
#dp[i]之和dp[i-1]有关
if dp[i-1]>=0:
dp[i]=dp[i-1]+nums[i]
else:
dp[i]=nums[i]
return max(dp)
nums= [-2,1,-3,4,-1,2,1,-5,4]
print(maxsub(nums))
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jY6Bmjdj-1650247907473)(C:\Users\Tian\AppData\Roaming\Typora\typora-user-images\image-20220402140320549.png)]
#4、整数拆分
'''
1、当n<=3时,返回(1,n-1)
2、当n>3时,b=n%3 a=n//3
b=0,n^a
b=1,n^(a-1)*4
b=2,3^a*2
'''
def intergerbreak(n):
if n<=3:
return 1*(n-1)
a,b=n//3,n%3
if b==0:
return 3**a
elif b==1:
return 3**(a-1)*4
else:
return 3**a*2
print(intergerbreak(10))
def intergerbreak(n):
dp=[0]*(n+1)
for i in range(2,n+1):
for j in range(i):
dp[i]=max(dp[i],j*(i-j),j*dp[i-j])
return dp[n]
print(intergerbreak(10))
def mindistance(word1,word2):
#dp[i][j]记录第一个字符串的i位置之前的字符串,第二个字符串的j位置
m=len(word1)
n=len(word2)
dp=[[0]*(n+1) for i in range(m+1)]
for i in range(1, m + 1):
dp[i][0] = i
for j in range(1, n + 1):
dp[0][j] = j
for i in range(1,m+1):
for j in range(1,n+1):
if word1[i-1]==word2[j-1]:
dp[i][j]=dp[i-1][j-1]
else:
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+1
return dp[m][n]
print(mindistance('sea','eat'))
def findLongest(pairs):
n=len(pairs)
dp=[1]*n
pairs.sort(key=lambda a:a[0])
for i in range(n):
for j in range(i):
if pairs[i][0]>pairs[j][1]:
dp[i]=max(dp[i],dp[j]+1)
return max(dp)
pairs=[[1,2], [2,3], [3,4]]
print(findLongest(pairs))
def wiggle(nums):
n=len(nums)
if n==1:
return 1
down=1
up=1
for i in range(1,n):
if nums[i]>nums[i-1]:
up=down+1
elif nums[i]
def findtarget(nums,target):
if (sum(nums)+target)%2!=0:
return 0
total=(target+sum(nums))//2
if total<0:
return 0
n=len(nums)
#dp[i][j]表示在数组前i个数中选取元素,最终和差为j的方案数
dp=[[0]*(total+1) for _ in range(n)]
dp[0][nums[0]]=1
dp[0][0]+=1
for i in range(1,n):
for j in range(total+1):#迭代正数和
if j>=nums[i]:#装或不装nums[i]
dp[i][j]=dp[i-1][j-nums[i]]+dp[i-1][j]
else:
dp[i][j]=dp[i-1][j]
return dp[-1][-1]
nums=[1,1,1,1,1]
print(findtarget(nums,3))
#正数和=(sum(nums)+target)/2
def find2(nums,target):
if (sum(nums)+target)!=0 or sum(nums)
def maxprofit(prices,fee):
'''
dp[i][0]表示第i天,持有股票-当天买入或者前i天买入
dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i])
dp[i][1]表示第i天没有股票--之前卖出或者当天卖出
dp[i][1]=max(dp[i-1][0]-fee+prices[i],dp[i-1][1])
'''
n=len(prices)
if n==1:
return 0
dp=[[0,0] for i in range(n)]
dp[0]=[-prices[0],0]
for i in range(1,n):
dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i])
dp[i][1]=max(dp[i-1][0]-fee+prices[i],dp[i-1][1])
return dp[-1][-1]
prices=[1,3,7,5,10,3]
print(maxprofit(prices,3))
#使用变量进行状态转移
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
n = len(prices)
sell, buy = 0, -prices[0]
for i in range(1, n):
sell, buy = max(sell, buy + prices[i] - fee), max(buy, sell - prices[i])
return sell
#1、公倍数与公因数
#1、埃拉托斯特尼筛法
def count_primes_py(n):
#最小的质数是2
if n<2:
return 0
isPrime=[1]*n
isPrime[0]=isPrime[1]=0
for i in range(2,int(n**0.5)+1):
if isPrime[i]:
isPrime[i*i:n:i]=[0]*len(isPrime[i*i:n:i])
return sum(isPrime)
print(count_primes_py(10))
def converttobase(num):
if num==0:
return '0'
fu=num<0
if fu:
num=-num
ans=''
while num:
a,b=num//7,num%7
ans=str(b)+ans
num=a
return '-'+ans if fu else ans
num=-7
print(converttobase(num))
#阶乘后的零大部分来源于2*5,但是2的数量往往多与5的数量,在这里我们统计5的数量
def trailing(n):
return 0 if n==0 else n//5+trailing(n//5)
print(trailing(12))
def addstrings(num1,num2):
res = ""
i, j, carry = len(num1) - 1, len(num2) - 1, 0
while i >= 0 or j >= 0:
n1 = int(num1[i]) if i >= 0 else 0
n2 = int(num2[j]) if j >= 0 else 0
tmp = n1 + n2 + carry
carry = tmp // 10
res = str(tmp % 10) + res
i, j = i - 1, j - 1
return "1" + res if carry else res
print(addstrings('11','123'))
def isPowerOfThree(n):
while n and n % 3 == 0:
n //= 3
return n == 1
#knuth洗牌算法:通过随机交换位置来实现随机打乱
'''
等概率选择每个位置应该填哪个数。
具体来说,我们先在0 ~ n-1中随机选一个坐标,将它作为第一个,和第一个交换位置; (每个数被选到的概率是 1/n)
剩下的n-1个数里,继续随机一个1 ~ n-1的坐标,将它作为第二个,和第二个交换位置;(每个数被选到的概率为第一次没被选到且第二次被选到 [(n-1)/n]*[1/(n-1)]
。。。
以此类推。
每个数填到每个位置是等概率的,都是1/n
'''
class Solution:
def __init__(self,nums:list[int]):
self.nums=nums
def reset(self)->List[int]:
return self.nums
def shuffle(self)->List[int]:
self.temp=list(self.nums)
for i in range(len(self.nums)):
idx=random.randint(i,len(self.nums)-1)
self.temp[i],self.temp[idx]=self.temp[idx],self.temp[i]
return self.temp
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6XLT6NPj-1650247907474)(C:\Users\Tian\AppData\Roaming\Typora\typora-user-images\image-20220331093508029.png)]
def converttitle(columnNumber):
ans=''
while columnNumber>0:
a0=(columnNumber-1)%26+1
ans=chr(a0-1+ord('A'))+ans
columnNumber=(columnNumber-a0)//26
return ans
print(converttitle(701))
def addBinary(a,b):
return bin(int(a,2)+int(b,2))[2:]
print(addBinary('11','1'))
def product(nums):
n=len(nums)
a=[1]*n
b=[1]*n
for i in range(1,n):
a[i]=a[i-1]*nums[i-1]
for i in range(n-2,-1,-1):
b[i]=b[i+1]*nums[i+1]
for i in range(n):
a[i]*=b[i]
return a
nums=[-1,1,0,-3,3]
print(product(nums))
#排序选择中位数需要移动的位数最少
def minMoves(nums):
nums.sort()
n=len(nums)
middle=nums[n//2]
move=0
for num in nums:
move+=abs(num-middle)
return move
print(minMoves([1,2,3]))
#randN可以等概率的生成[1,N]范围的随机数
#(randX()-1)*y+randY()可以等概率生成[1,X*Y]范围的随机数
def rand10(self):
"""
:rtype: int
"""
while True:
a = rand7();
b = rand7()
num = (a-1)*7 + b
if num <= 40:
return num % 10 + 1
'''
1、找到快乐数
2、没有快乐数,形成环路,造成死循环
创建一个满指针,一次走一步,在创建一个快指针,一次走两步
'''
def isHappy(n):
def get_next(number):
total_sum=0
while number>0:
number,digit=divmod(number,10)
total_sum+=digit**2
return total_sum
slow_runner=n
fast_runner=get_next(n)
while fast_runner!=1 and slow_runner!=fast_runner:
slow_runner=get_next(slow_runner)
fast_runner=get_next(get_next(fast_runner))
return fast_runner==1
print(isHappy(19))
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Z8fMTmLM-1650247907474)(C:\Users\Tian\AppData\Roaming\Typora\typora-user-images\image-20220331161705637.png)]
def majorityelement(nums):
count=0
candidate=None
for num in nums:
if count==0:
candidate=num
count+=(1 if num==candidate else -1)
return candidate