统一使用 YOLOv5 代码框架,结合不同模块来构建不同的YOLO目标检测模型。
本项目包含大量的改进方式,降低改进难度,改进点包含【Backbone特征主干】
、【Neck特征融合】
、【Head检测头】
、【注意力机制】
、【IoU损失函数】
、【NMS】
、【Loss计算方式】
、【自注意力机制
】、【数据增强部分】
、【标签分配策略
】、【激活函数
】等各个部分,详情可以关注 YOLOAir 的说明文档。
可以排列组合上千种模块 不同的搭配 (推荐)
同时附带各种改进点原理及对应的代码改进方式教程
,用户可根据自身情况快速排列组合,在不同的数据集上实验, 应用组合写论文!
所有的改进代码的项目都在这个地址,点star!!
YOLOAir仓库:https://github.com/iscyy/yoloair
YOLO Air算法库汇总了多种主流YOLO系列检测模型,一套代码集成多种模型:
YOLOv5 模型网络结构
YOLOv7 模型网络结构
YOLOX 模型网络结构
YOLOR 模型网络结构
YOLO3 模型网络结构
YOLO4 模型网络结构
等…
fork 和 star,持续同步更新完善
改进YOLO系列Trick QQ交流群: 569076270
YOLOv5 + ShuffleAttention注意力机制
博客链接:改进YOLOv5系列:12.添加ShuffleAttention注意力机制
YOLOv5 + CrissCrossAttention注意力机制
博客链接:改进YOLOv5系列:13.添加CrissCrossAttention注意力机制
YOLOv5 + S2-MLPv2注意力机制
博客链接:改进YOLOv5系列:14.添加S2-MLPv2注意力机制
YOLOv5 + SimAM注意力机制
博客链接:改进YOLOv5系列:15.添加SimAM注意力机制
YOLOv5 + SKAttention注意力机制
博客链接:改进YOLOv5系列:16.添加SKAttention注意力机制
YOLOv5 + NAMAttention注意力机制
博客链接:改进YOLOv5系列:17.添加NAMAttention注意力机制
YOLOv5 + SOCA注意力机制
博客链接:改进YOLOv5系列:18.添加SOCA注意力机制
YOLOv5 + CBAM注意力机制
博客链接:改进YOLOv5系列:18.添加CBAM注意力机制
YOLOv5 + SEAttention注意力机制
博客链接:改进YOLOv5系列:19.添加SEAttention注意力机制
YOLOv5 + GAMAttention注意力机制
博客链接:改进YOLOv5系列:20.添加GAMAttention注意力机制
YOLOv5 + CA注意力机制
博客链接:github
YOLOv5 + ECA注意力机制 博客链接:github
更多模块详细解释持续更新中。。。
# YOLOv5 by YOLOAir, GPL-3.0 license
# parameters
nc: 10 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
#- [5,6, 7,9, 12,10] # P2/4
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args] # [c=channels,module,kernlsize,strides]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [c=3,64*0.5=32,3]
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, GAMAttention, [1024,1024]], #9
[-1, 1, SPPF, [1024,5]], #10
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 14
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 15], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 21 (P4/16-medium) [256, 256, 1, False]
[-1, 1, Conv, [512, 3, 2]], #[256, 256, 3, 2]
[[-1, 11], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 24 (P5/32-large) [512, 512, 1, False]
[[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
./models/common.py文件增加以下模块
import numpy as np
import torch
from torch import nn
from torch.nn import init
class GAMAttention(nn.Module):
#https://paperswithcode.com/paper/global-attention-mechanism-retain-information
def __init__(self, c1, c2, group=True,rate=4):
super(GAMAttention, self).__init__()
self.channel_attention = nn.Sequential(
nn.Linear(c1, int(c1 / rate)),
nn.ReLU(inplace=True),
nn.Linear(int(c1 / rate), c1)
)
self.spatial_attention = nn.Sequential(
nn.Conv2d(c1, c1//rate, kernel_size=7, padding=3,groups=rate)if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3),
nn.BatchNorm2d(int(c1 /rate)),
nn.ReLU(inplace=True),
nn.Conv2d(c1//rate, c2, kernel_size=7, padding=3,groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3),
nn.BatchNorm2d(c2)
)
def forward(self, x):
b, c, h, w = x.shape
x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
x_channel_att = x_att_permute.permute(0, 3, 1, 2)
x = x * x_channel_att
x_spatial_att = self.spatial_attention(x).sigmoid()
x_spatial_att=channel_shuffle(x_spatial_att,4) #last shuffle
out = x * x_spatial_att
return out
def channel_shuffle(x, groups=2): ##shuffle channel
#RESHAPE----->transpose------->Flatten
B, C, H, W = x.size()
out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
out=out.view(B, C, H, W)
return out
在 models/yolo.py文件夹下
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
内部elif m is GAMAttention:
c1, c2 = ch[f], args[0]
if c2 != no:
c2 = make_divisible(c2 * gw, 8)
python train.py --cfg yolov5_GAMAttention.yaml
11.改进YOLOv5系列:11.ConvNeXt结合YOLO | CVPR2022 多种搭配,即插即用 | Backbone主干CNN模型
10.改进YOLOv5系列:10.最新HorNet结合YOLO应用首发! | ECCV2022出品,多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互
9.改进YOLOv5系列:9.BoTNet Transformer结构的修改
8.改进YOLOv5系列:8.增加ACmix结构的修改,自注意力和卷积集成
7.改进YOLOv5系列:7.修改DIoU-NMS,SIoU-NMS,EIoU-NMS,CIoU-NMS,GIoU-NMS
6.改进YOLOv5系列:6.修改Soft-NMS,Soft-CIoUNMS,Soft-SIoUNMS
5.改进YOLOv5系列:5.CotNet Transformer结构的修改
4.改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改
3.改进YOLOv5系列:3.Swin Transformer结构的修改
2.改进YOLOv5系列:2.PicoDet结构的修改
1.改进YOLOv5系列:1.多种注意力机制修改