numpy是一个开源的python科学计算扩展库,主要用来处理任意维度数组和矩阵。
相同的任务,使用numpy比直接用python的基本数据结构更加简单高效。
它的功能:
n维数组,它是一个相同数据类型的集合,以0为下标开始进行集合中元素的索引。
我们知道,python有列表和数组此类的数据结构。
列表:数据类型可以不同(如[3, 2.4 ,‘a’ ,“abc”]),数据是有序的
数组:数据类型相同(如[1,2,3,4])
集合:(如{2,4,3,5,7})数据是无序的
观察下列两组操作,其功能都是一样的。
import numpy as np
def pysum():
a = [1, 2, 3, 4]
b = [5, 6, 7, 8]
c = []
for i in range(len(a)):
c.append(a[i]**2+b[i]**3)
return c
def numpysum():
a = np.array([1, 2, 3, 4])
b = np.array([5, 6, 7, 8])
c = a**2+b**3
return c
print("使用列表运算的结果是:", pysum())
print("使用Numpy运算的结果是:", numpysum())
'''
运行结果:
使用列表运算的结果是: [126, 220, 352, 528]
使用Numpy运算的结果是: [126 220 352 528]
'''
但是很明显:
当np.array()不指定dtype时,numpy将根据数据情况关联一个dtype类型
import numpy as np
x = np.array([[1, 0], [2, 0], [3, 1]], np.int32)
print(x)
print(x.dtype)
'''
程序输出:
[[1 0]
[2 0]
[3 1]]
int32
'''
索引:获取数组中特定位置元素的过程
切片:获取数组元素子集的过程
函数 | 功能 |
---|---|
diag | 以一维数组的形式返回方阵的对角线元素,或将一维数组转换维方阵 |
dot | 矩阵乘法 |
trace | 计算对角线元素的和 |
det | 计算矩阵行列式 |
eig | 计算方阵的本征值和本征向量 |
inv | 计算方阵的逆 |
svd | 计算奇异值分解 |
solve | 解线性方程组Ax=b,其中A为方阵 |
lstsq | 计算Ax=b的最小二乘解 |
(好家伙,numpy内置函数太多了…)