poj1556

计算几何+最短路

最短路是套的模版。。= =

poj1556

毕竟不是自己写的。。模版上的点竟然是从0开始的。

难在建图。图中,比如2和12点,其间如果没有任何线段阻挡,那么边权是他们的直线距离,如果有线段阻挡,边权是inf。

枚举每两个点,用其组成的线段与其他所有线段判断,如果相交则边权inf,如果不相交距离是其直线距离。

 

#include <iostream>

#include <math.h>



#define eps 1e-8

#define zero(x) (((x)>0?(x):-(x))<eps)



#define pi acos(-1.0)





struct point

{

	double x, y;

};



struct line

{

	point a, b;

};



//计算cross product (P1-P0)x(P2-P0)

double xmult(point p1, point p2, point p0)

{

	return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);

}

//两点距离

double distance(point p1, point p2)

{

	return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));

}



//判三点共线

bool dots_inline(point p1, point p2, point p3)

{

	return zero(xmult(p1, p2, p3));

}



//判点是否在线段上,包括端点

bool dot_online_in(point p, line l)

{

	return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps;

}



//判点是否在线段上,不包括端点

bool dot_online_ex(point p, line l)

{

	return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y));

}



//判两点在线段同侧,点在线段上返回0

bool same_side(point p1, point p2, line l)

{

	return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps;

}



//判两点在线段异侧,点在线段上返回0

bool opposite_side(point p1, point p2, line l)

{

	return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps;

}



//判两直线平行

bool parallel(line u, line v)

{

	return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y));

}



//判两直线垂直

bool perpendicular(line u, line v)

{

	return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y));

}



//判两线段相交,包括端点和部分重合

bool intersect_in(line u, line v)

{

	if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))

		return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);

	return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);

}

bool intersect_ex(line u, line v)

{

	return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);

}



//单源最短路径,bellman_ford算法,邻接阵形式,复杂度O(n^3)

//求出源s到所有点的最短路经,传入图的大小n和邻接阵mat

//返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1

//可更改路权类型,路权可为负,若图包含负环则求解失败,返回0

//优化:先删去负边使用dijkstra求出上界,加速迭代过程

#define MAXN 200

#define inf 1000000000

typedef double elem_t;



int bellman_ford(int n, elem_t mat [][MAXN], int s, elem_t* min, int* pre){

	int v[MAXN], i, j, k, tag;

	for (i = 0; i < n; i++)

		min[i] = inf, v[i] = 0, pre[i] = -1;

	for (min[s] = 0, j = 0; j < n; j++){

		for (k = -1, i = 0; i < n; i++)

			if (!v[i] && (k == -1 || min[i] < min[k]))

				k = i;

		for (v[k] = 1, i = 0; i < n; i++)

			if (!v[i] && mat[k][i] >= 0 && min[k] + mat[k][i] < min[i])

				min[i] = min[k] + mat[pre[i] = k][i];

	}

	for (tag = 1, j = 0; tag && j <= n; j++)

		for (tag = i = 0; i < n; i++)

			for (k = 0; k < n; k++)

				if (min[k] + mat[k][i] < min[i])

					min[i] = min[k] + mat[pre[i] = k][i], tag = 1;

	return j <= n;

}



int main()

{

	line l[100];

	point p[200];

	int n;

	while (std::cin >> n && (n != -1))

	{

		int j = -1;

		int k = 0;

		p[0].x = 0.0, p[0].y = 5.0;

		for (int i = 0; i < n; i++)

		{

			double a, b, c, d, e;

			std::cin >> a >> b >> c >> d >> e;

			l[++j].a.x = a, l[j].a.y = 0.0;

			l[j].b.x = a, l[j].b.y = b;



			l[++j].a.x = a, l[j].a.y = c;

			l[j].b.x = a, l[j].b.y = d;



			l[++j].a.x = a, l[j].a.y = e;

			l[j].b.x = a, l[j].b.y = 10.0;



			p[++k].x = a, p[k].y = 0.0;

			p[++k].x = a, p[k].y = b;

			p[++k].x = a, p[k].y = c;

			p[++k].x = a, p[k].y = d;

			p[++k].x = a, p[k].y = e;

			p[++k].x = a, p[k].y = 10.0;

		}

		p[++k].x = 10.0, p[k].y = 5.0;



		/*for (int i = 0; i <= j; i++)

		{

		std::cout << l[i].a.x << ' ' << l[i].a.y << " to " << l[i].b.x << ' ' << l[i].b.y << std::endl;

		}

		for (int i = 1; i <= k; i++)

		{

		std::cout << i << ' '<<p[i].x << ' ' << p[i].y << std::endl;

		}*/



		double mat[MAXN][MAXN];

		for (int a = 0; a <= k; a++)

		{

			for (int b = 0; b <= k; b++)

			{

				line temp;

				temp.a = p[a], temp.b = p[b];

				bool flag = false;

				for (int c = 1; c <= j; c++)

				{

					if (intersect_ex(temp, l[c]))

					{

						mat[a][b] = inf;

						flag = true;

						break;

					}

				}

				if (!flag)

				{

					mat[a][b] = distance(p[a], p[b]);

				}

			}

		}

		/*

		for (int a = 0; a <= k; a++)

		{

			for (int b = 0; b <= k; b++)

			{

				std::cout << a << ' ' << b << ' ' << mat[a][b] << '\n';

			}

		}

		std::cout << k << std::endl;*/

		

		elem_t min[MAXN];

		int pre[MAXN];

		bellman_ford(k+1, mat, 0, min, pre);

		/*for (int i = 0; i <= k; i++)

		{

			std::cout << ' ' << min[i] << "\n";

		}*/

		printf("%.2lf\n", min[k]);

	}

}


 

 

你可能感兴趣的:(poj)