Codeforces Round #286 (Div. 1) 解题报告

A.Mr. Kitayuta, the Treasure Hunter

     很显然的一个DP,30000的数据导致使用map+set会超时。题解给了一个非常实用的做法,由于每个点有不超过250种状态,并且这些状态都是以包含d连续的一段数字,那么可以以对d的偏移量作为状态。这算是很常见的一个优化了。

#include<bits/stdc++.h>

using namespace std;

const int INF = 30009;

int f[INF][500],a[INF];

int n, d, ans = 1, x;

int main() {

    scanf ("%d %d", &n, &d);

    for (int i = 1; i <= n; i++) {

        scanf ("%d", &x);

        a[x]++;

    }

    f[d][250] = a[d] + 1;

    for (int i = d; i <= x; i++)

        for (int j = 0; j < 500; j++) {

            if (f[i][j] == 0) continue;

            int k = j - 250 + d, val = f[i][j];

            ans = max (ans, val);

            for (int t = max (1, k - 1); t <= k + 1; t++)

                if (i + t <= x)

                    f[i + t][t - d + 250] = max (f[i + t][t - d + 250], val + a[i + t]);

        }

    printf ("%d\n", ans - 1);

}
View Code

 

 

B.Mr. Kitayuta's Technology

     [Problem] Given an integer n and m pairs of integers (ai, bi) (1 ≤ ai, bi ≤ n), find the minimum number of edges in a directed graph that satisfies the following condition:

  • For each i, there exists a path from vertex ai to vertex bi.

    对于一个n个点的强连通图最少需要n条边,而非强连通的n个有边连接的点最少需要n-1条边。那么只要判断连通起来的k个点组成的块是不是有环,如果有环需要k条边,无环需要k-1条边。在连完一个连通的块后将其合并看成一个点。直到所有点都遍历过。

#include<bits/stdc++.h>

using namespace std;

const int INF = 120009;

struct Edge {

    int v, next;

} edge[INF];

int head[INF], ncnt ;

int f[INF], vis[INF], cycle[INF], siz[INF];

int n, m, ans;

inline void adde (int u, int v) {

    edge[++ncnt].v = v, edge[ncnt].next = head[u];

    head[u] = ncnt;

}

inline int find (int x) {

    if (f[x] == x) return x;

    return f[x] = find (f[x]);

}

inline void uin (int x, int y)

{

    siz[find (x)] += siz[find (y)];

    f[find (y)] = find (x);

}

inline bool dfs (int u) {

    vis[u] = 1;

    for (int i = head[u]; i; i = edge[i].next) {

        int v = edge[i].v;

        if (!vis[v])     dfs (v);

        if (vis[v] == 1) cycle[find (u)] = 1;

    }

    vis[u] = 2;

}

int main() {

    scanf ("%d %d", &n, &m);

    for (int i = 1; i <= n; i++) f[i] = i, siz[i] = 1;

    for (int i = 1, x, y; i <= m; i++) {

        scanf ("%d %d", &x, &y);

        adde (x, y);

        if (find (x) != find (y) ) uin (x, y);

    }

    for (int i = 1; i <= n; i++)

        if (!vis[i]) dfs (i);

    for (int i = 1; i <= n; i++) {

        if (find (i) == i)

            ans += siz[i] - 1;

        ans += cycle[i];

    }

    printf ("%d\n", ans);

}
View Code

 

D.Mr. Kitayuta's Colorful Graph

  题意:一个n个点m条边的无向图中所有的边都有一个颜色,有q个询问,对每个询问(u,v)输出从u到v的纯色路径条数。(n,m,q<1e5)

 

  首先应该先把所有相同颜色边连接的块做一次并查集,然后对所有询问(a,b)对a,b中有着较少的度的点的颜色查找b是否与a在一个集合。

  unordered_map能够在让查找b的时间降到O(1)

 

#include<bits/stdc++.h>

using namespace std;

const int INF = 100009;



unordered_map<int, int> f[INF], old[INF];



int n, m, q;

inline int find (int x, int c) {

    if (f[x][c] < 0) return x;

    return f[x][c] = find (f[x][c], c);

}

inline void merge (int x, int y, int c) {

    if (f[x].find (c) == f[x].end() ) f[x][c] = -1;

    if (f[y].find (c) == f[y].end() ) f[y][c] = -1;

    x = find (x, c), y = find (y, c);

    if (x == y) return;

    f[y][c] += f[x][c];

    f[x][c] = y;

}

int main() {

    scanf ("%d %d", &n, &m);

    for (int i = 1, x, y, c; i <= m; i++) {

        scanf ("%d %d %d", &x, &y, &c);

        merge (x, y, c);

    }

    scanf ("%d", &q);

    int a, b;

    while (q--) {

        scanf ("%d %d", &a, &b);

        if (f[a].size() > f[b].size() ) swap (a, b);

        if (old[a].find (b) == old[a].end() ) {

            int ans = 0;

            for (auto &c : f[a])

                if (f[b].find (c.first) != f[b].end() && find (a, c.first) == find (b, c.first) )

                    ans++;

            old[a][b] = ans;

        }

        printf ("%d\n", old[a][b]);

    }

}
View Code

 

你可能感兴趣的:(codeforces)