AlexNet模型
#网络模型构建
class AlexNet(nn.Module):
def __init__(self,num_classes=2):
super(AlexNet, self).__init__()
self.features=nn.Sequential(
nn.Conv2d(3,48, kernel_size=11),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3,stride=2),
nn.Conv2d(48,128, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3,stride=2),
nn.Conv2d(128,192,kernel_size=3,stride=1,padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(192,192,kernel_size=3,stride=1,padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(192,128,kernel_size=3,stride=1,padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3,stride=2),
)
self.classifier=nn.Sequential(
nn.Linear(6*6*128,2048),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(2048,2048),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(2048,num_classes),
)
def forward(self,x):
x=self.features(x)
x=torch.flatten(x,start_dim=1)
x=self.classifier(x)
return x
通常情况下,模型中模块的定义都是类似于 self.conv1=nn.Conv2d(3,48,kernel_size=11),其中conv1是模块的名称。
from torch import nn
from torchsummary import summary
class Net_test(nn.Module):
def __init__(self):
super(Net_test,self).__init__()
self.conv_1 = nn.Conv2d(3,6,3)
self.add_module('conv_2', nn.Conv2d(6,12,3))
self.conv_3 = nn.Conv2d(12,24,3)
def forward(self,x):
x = self.conv_1(x)
x = self.conv_2(x)
x = self.conv_3(x)
return x
model = Net_test()
print(model)
summary(model,(3,128,128))