猿创征文|Flink 1.13 源码解析——JobManager启动流程之ResourceManager启动

点击这里查看 Flink 1.13 源码解析 目录汇总

点击查看相关章节:Flink 1.13 源码解析——JobManager启动流程概览

点击查看相关章节:Flink 1.13 源码解析——JobManager启动流程 WebMonitorEndpoint启动

点击查看相关章节:Flink 1.13 源码解析——JobManager启动流程之Dispatcher启动
 

目录

一、前言

二、ResourceManager的启动

2.1、触发Onstart回调

2.2、Leader竞选,完成后进行isLeader的回调

2.3、两个心跳以及两个定时任务

2.3.1、两个心跳

2.3.2、两个定时

三、总结:


一、前言

在开始解析ResourceManager之前,我们先来复习一下Flink主节点中的一些重要概念:

        关于Flink的主节点JobManager,他只是一个逻辑上的主节点,针对不同的部署模式,主节点的实现类也不同。

        JobManager(逻辑)有三大核心内容,分别为ResourceManager、Dispatcher和WebmonitorEndpoin:

ResourceManager:

        Flink集群的资源管理器,只有一个,关于Slot的管理和申请等工作,都有它负责

Dispatcher:

        1、负责接收用户提交的JobGraph,然后启动一个JobMaster,类似于Yarn中的AppMaster和Spark中的Driver。

        2、内有一个持久服务:JobGraphStore,负责存储JobGraph。当构建执行图或物理执行图时主节点宕机并恢复,则可以从这里重新拉取作业JobGraph

WebMonitorEndpoint:

        Rest服务,内部有一个Netty服务,客户端的所有请求都由该组件接收处理

用一个例子来描述这三个组件的功能:

        当Client提交一个Job到集群时(Client会把Job构建成一个JobGraph),主节点接收到提交的job的Rest请求后,WebMonitorEndpoint 会通过Router进行解析找到对应的Handler来执行处理,处理完毕后交由Dispatcher,Dispatcher负责大气JobMaster来负责这个Job内部的Task的部署执行,执行Task所需的资源,JobMaster向ResourceManager申请。 

ResourceManager在Flink中扮演的角色就是一个资源管理器,负责Slot的管理和申请等工作。

下面我们来看ResourceManager的启动代码。

二、ResourceManager的启动

首先回到dispatcherResourceManagerComponentFactory.create()方法,在完成了WebMonitorEndpoint的创建和启动之后,将进行ResourceManager的启动,我们来看代码:

 resourceManager =
                    resourceManagerFactory.createResourceManager(
                            configuration,
                            ResourceID.generate(),
                            rpcService,
                            highAvailabilityServices,
                            heartbeatServices,
                            fatalErrorHandler,
                            new ClusterInformation(hostname, blobServer.getPort()),
                            webMonitorEndpoint.getRestBaseUrl(),
                            metricRegistry,
                            hostname,
                            ioExecutor);

 resourceManager.start();

在这里首先初始化了ResourceManager实例,然后调用了start方法启动ResourceManager,我们来看start方法

 @Override
    public void start() {
        // 向自己发送消息,告知已启动
        rpcEndpoint.tell(ControlMessages.START, ActorRef.noSender());
    }

ResourceManager是一个RpcEndpoint(Actor),在start方法里,知识是向自己发送了一条消息,告知已启动的状态。

那么我们回头去看ResourceManager的构建过程,我们去看resourceManagerFactory.createResourceManager方法。

 // TODO 构建ResourceManagerRuntimeServices,加载配置
        final ResourceManagerRuntimeServices resourceManagerRuntimeServices =
                createResourceManagerRuntimeServices(
                        effectiveResourceManagerAndRuntimeServicesConfig,
                        rpcService,
                        highAvailabilityServices,
                        slotManagerMetricGroup);

        // TODO 构建ResourceManager
        return createResourceManager(
                getEffectiveConfigurationForResourceManager(
                        effectiveResourceManagerAndRuntimeServicesConfig),
                resourceId,
                rpcService,
                highAvailabilityServices,
                heartbeatServices,
                fatalErrorHandler,
                clusterInformation,
                webInterfaceUrl,
                resourceManagerMetricGroup,
                resourceManagerRuntimeServices,
                ioExecutor);

在方法里, 主要做了两件事:

1、构建ResourceManagerRuntimeServices并加载配置

2、真正构建ResourceManager

2.1、触发Onstart回调

我们进入createResourceManager方法里,选择StandaloneResourceManagerFactory的实现,可以看到:

   @Override
    protected ResourceManager createResourceManager(
            Configuration configuration,
            ResourceID resourceId,
            RpcService rpcService,
            HighAvailabilityServices highAvailabilityServices,
            HeartbeatServices heartbeatServices,
            FatalErrorHandler fatalErrorHandler,
            ClusterInformation clusterInformation,
            @Nullable String webInterfaceUrl,
            ResourceManagerMetricGroup resourceManagerMetricGroup,
            ResourceManagerRuntimeServices resourceManagerRuntimeServices,
            Executor ioExecutor) {

        // TODO ResourceManager启动超时时间: 从启动,到有TaskManager汇报的时间,
        // TODO 可以通过resourcemanager.standalone.start-up-time进行设置,如果没有设置则默认等于Slot申请超时时间
        final Time standaloneClusterStartupPeriodTime =
                ConfigurationUtils.getStandaloneClusterStartupPeriodTime(configuration);

        return new StandaloneResourceManager(
                rpcService,
                resourceId,
                highAvailabilityServices,
                heartbeatServices,
                resourceManagerRuntimeServices.getSlotManager(),
                ResourceManagerPartitionTrackerImpl::new,
                resourceManagerRuntimeServices.getJobLeaderIdService(),
                clusterInformation,
                fatalErrorHandler,
                resourceManagerMetricGroup,
                standaloneClusterStartupPeriodTime,
                AkkaUtils.getTimeoutAsTime(configuration),
                ioExecutor);
    }

在这段代码里,主要完成了两件事:

1、配置ResourceManager启动超时时间,所谓超时时间,是指从ResourceManager启动,一直到有TaskManager向ResourceManager注册的时间长度,当超过配置的时间还没有TaskManager来向当前ResourceManager来注册,则认为当前ResourceManager启动超时,改参数可以通过resourcemanager.standalone.start-up-time进行设置,如果没有设置则默认等于Slot申请超时时间

2、构建了一个StandaloneResourceManager实例

我们继续看StandaloneResourceManager的构建过程,进入StandaloneResourceManager的构造方法,一直追溯到ResourceManager的构造方法,可以看到ResourceManager继承了RpcEndpoint,所以他一定有一个onStart方法,在构建完成之后会被回调,所以我们直接去找ResourceManager的onStart方法:

// ------------------------------------------------------------------------
    //  RPC lifecycle methods
    // ------------------------------------------------------------------------

    @Override
    public final void onStart() throws Exception {
        try {
            log.info("Starting the resource manager.");
            // TODO 启动ResourceManager 的基础服务
            startResourceManagerServices();
        } catch (Throwable t) {
            final ResourceManagerException exception =
                    new ResourceManagerException(
                            String.format("Could not start the ResourceManager %s", getAddress()),
                            t);
            onFatalError(exception);
            throw exception;
        }
    }

可以看到,在方法里调用了startResourceManagerServices()方法来启动ResourceManager的基础服务,我们进入startResourceManagerServices()方法:

    private void startResourceManagerServices() throws Exception {
        try {
            // TODO 获取选举服务
            leaderElectionService =
                    highAvailabilityServices.getResourceManagerLeaderElectionService();
            // 在Standalone模式下没有做任何操作
            initialize();

            // TODO 开始竞选
            leaderElectionService.start(this);
            jobLeaderIdService.start(new JobLeaderIdActionsImpl());

            registerMetrics();
        } catch (Exception e) {
            handleStartResourceManagerServicesException(e);
        }
    }

又看到了我们熟悉的操作,Leader竞选。

2.2、Leader竞选,完成后进行isLeader的回调

我们直接来看leaderElectionService.start方法

@Override
    public final void start(LeaderContender contender) throws Exception {
        checkNotNull(contender, "Contender must not be null.");
        Preconditions.checkState(leaderContender == null, "Contender was already set.");

        synchronized (lock) {
            /*
             TODO 在WebMonitorEndpoint中调用时,此contender为DispatcherRestEndPoint
              在ResourceManager中调用时,contender为ResourceManager
              在DispatcherRunner中调用时,contender为DispatcherRunner
             */
            leaderContender = contender;

            // TODO 此处创建选举对象 leaderElectionDriver
            leaderElectionDriver =
                    leaderElectionDriverFactory.createLeaderElectionDriver(
                            this,
                            new LeaderElectionFatalErrorHandler(),
                            leaderContender.getDescription());
            LOG.info("Starting DefaultLeaderElectionService with {}.", leaderElectionDriver);

            running = true;
        }
    }

哦豁,这不就是上一章WebMonitorEndpoint启动时调用过的方法嘛,只不过由于此处是ResourceManager的选举,当前contender为ResourceManager。老规矩,我们直接去看createLeaderElectionDriver方法。由于是Standalone模式,我们选择ZooKeeperLeaderElectionDriverFactory的实现:

    @Override
    public ZooKeeperLeaderElectionDriver createLeaderElectionDriver(
            LeaderElectionEventHandler leaderEventHandler,
            FatalErrorHandler fatalErrorHandler,
            String leaderContenderDescription)
            throws Exception {
        return new ZooKeeperLeaderElectionDriver(
                client,
                latchPath,
                leaderPath,
                leaderEventHandler,
                fatalErrorHandler,
                leaderContenderDescription);
    }

可以看到这里返回了一个zk的选举驱动,我们在点进ZooKeeperLeaderElectionDriver类

    public ZooKeeperLeaderElectionDriver(
            CuratorFramework client,
            String latchPath,
            String leaderPath,
            LeaderElectionEventHandler leaderElectionEventHandler,
            FatalErrorHandler fatalErrorHandler,
            String leaderContenderDescription)
            throws Exception {
        this.client = checkNotNull(client);
        this.leaderPath = checkNotNull(leaderPath);
        this.leaderElectionEventHandler = checkNotNull(leaderElectionEventHandler);
        this.fatalErrorHandler = checkNotNull(fatalErrorHandler);
        this.leaderContenderDescription = checkNotNull(leaderContenderDescription);

        leaderLatch = new LeaderLatch(client, checkNotNull(latchPath));
        cache = new NodeCache(client, leaderPath);

        client.getUnhandledErrorListenable().addListener(this);

        running = true;

        // TODO 开始选举
        leaderLatch.addListener(this);
        leaderLatch.start();

        /*
        TODO 选举开始后,不就会接收到响应:
         1.如果竞选成功,则回调该类的isLeader方法
         2.如果竞选失败,则回调该类的notLeader方法
         每一个竞选者对应一个竞选Driver
         */

        cache.getListenable().addListener(this);
        cache.start();

        client.getConnectionStateListenable().addListener(listener);
    }

又来到了这个选举方法,在上节里我们讲到,在完成选举之后会回调isLeader方法或notLeader方法,我们这里直接去看isLeader方法

 /*
    选举成功
     */
    @Override
    public void isLeader() {
        leaderElectionEventHandler.onGrantLeadership();
    }

在进入leaderElectionEventHandler.onGrantLeadership()方法:

 @Override
    @GuardedBy("lock")
    public void onGrantLeadership() {
        synchronized (lock) {
            if (running) {
                issuedLeaderSessionID = UUID.randomUUID();
                clearConfirmedLeaderInformation();

                if (LOG.isDebugEnabled()) {
                    LOG.debug(
                            "Grant leadership to contender {} with session ID {}.",
                            leaderContender.getDescription(),
                            issuedLeaderSessionID);
                }

                /*
                TODO 有4中竞选者类型,LeaderContender有4中情况
                 1.Dispatcher = DefaultDispatcherRunner
                 2.JobMaster = JobManagerRunnerImpl
                 3.ResourceManager = ResourceManager
                 4.WebMonitorEndpoint = WebMonitorEndpoint
                 */
                leaderContender.grantLeadership(issuedLeaderSessionID);
            } else {
                if (LOG.isDebugEnabled()) {
                    LOG.debug(
                            "Ignoring the grant leadership notification since the {} has "
                                    + "already been closed.",
                            leaderElectionDriver);
                }
            }
        }
    }

再进入leaderContender.grantLeadership方法,选择ResourceManager的实现:

 // ------------------------------------------------------------------------
    //  Leader Contender
    // ------------------------------------------------------------------------

    /**
     * Callback method when current resourceManager is granted leadership.
     *
     * @param newLeaderSessionID unique leadershipID
     */
    @Override
    public void grantLeadership(final UUID newLeaderSessionID) {
        final CompletableFuture acceptLeadershipFuture =
                clearStateFuture.thenComposeAsync(
                        // TODO 选举成功后执行回调函数
                        (ignored) -> tryAcceptLeadership(newLeaderSessionID),
                        getUnfencedMainThreadExecutor());

        final CompletableFuture confirmationFuture =
                acceptLeadershipFuture.thenAcceptAsync(
                        (acceptLeadership) -> {
                            if (acceptLeadership) {
                                // confirming the leader session ID might be blocking,
                                leaderElectionService.confirmLeadership(
                                        newLeaderSessionID, getAddress());
                            }
                        },
                        ioExecutor);

        confirmationFuture.whenComplete(
                (Void ignored, Throwable throwable) -> {
                    if (throwable != null) {
                        onFatalError(ExceptionUtils.stripCompletionException(throwable));
                    }
                });
    }

在这个方法内部,ResourceManager调用了一个tryAcceptLeadership()方法,我们进入这个方法

 private CompletableFuture tryAcceptLeadership(final UUID newLeaderSessionID) {
        if (leaderElectionService.hasLeadership(newLeaderSessionID)) {
            final ResourceManagerId newResourceManagerId =
                    ResourceManagerId.fromUuid(newLeaderSessionID);

            log.info(
                    "ResourceManager {} was granted leadership with fencing token {}",
                    getAddress(),
                    newResourceManagerId);

            // clear the state if we've been the leader before
            if (getFencingToken() != null) {
                clearStateInternal();
            }

            setFencingToken(newResourceManagerId);

            /*
            TODO 启动服务
             1.启动两个心跳服务
             2.启动slotManager服务启动两个定时任务
             */
            startServicesOnLeadership();

            return prepareLeadershipAsync().thenApply(ignored -> hasLeadership = true);
        } else {
            return CompletableFuture.completedFuture(false);
        }
    }

2.3、两个心跳以及两个定时任务

在这里通过调用startServicesOnLeadership方法,启动了两个心跳服务和两个定时任务,我们进入这个方法一探究竟:


    private void startServicesOnLeadership() {
        // TODO 启动两个心跳服务
        startHeartbeatServices();

        // TODO 启动两个定时服务
        // TODO SlotManager是存在于ResourceManager中用来管理所有TaskManager汇报和注册的Slot的工作的
        slotManager.start(getFencingToken(), getMainThreadExecutor(), new ResourceActionsImpl());

        onLeadership();
    }

2.3.1、两个心跳

我们先来看启动的两个心跳服务,进入startHeartbeatServices()方法:

 private void startHeartbeatServices() {
        // TODO ResourceManager(主节点)维持和从节点的心跳
        // TODO ResourceManager(逻辑JobManager)维持和TaskExecutor(TaskManager)的心跳
        taskManagerHeartbeatManager =
                heartbeatServices.createHeartbeatManagerSender(
                        resourceId,
                        new TaskManagerHeartbeatListener(),
                        getMainThreadExecutor(),
                        log);

        // TODO ResourceManager维持和JobMaster(主控程序)的心跳
        jobManagerHeartbeatManager =
                heartbeatServices.createHeartbeatManagerSender(
                        resourceId,
                        new JobManagerHeartbeatListener(),
                        getMainThreadExecutor(),
                        log);
    }

可以看到到这两个心跳分别为:

1、ResourceManager维持和TaskManager的心跳

2、ResourceManager维持和主控程序(JobMaster)的心跳

我们再来看这个心跳是如何实现的,我们进入createHeartbeatManagerSender方法,在进入HeartbeatManagerSenderImpl,再进入this,可以看到:

 HeartbeatManagerSenderImpl(
            long heartbeatPeriod,
            long heartbeatTimeout,
            ResourceID ownResourceID,
            HeartbeatListener heartbeatListener,
            ScheduledExecutor mainThreadExecutor,
            Logger log,
            HeartbeatMonitor.Factory heartbeatMonitorFactory) {
        super(
                heartbeatTimeout,
                ownResourceID,
                heartbeatListener,
                mainThreadExecutor,
                log,
                heartbeatMonitorFactory);

        this.heartbeatPeriod = heartbeatPeriod;
        // TODO 线程池定时调用this的run方法,由于delay为0L,立即执行
        mainThreadExecutor.schedule(this, 0L, TimeUnit.MILLISECONDS);
    }

在这里构建了一个延时线程池,不过延迟时间为0,则当代码执行到这里时会立即调用this的run方法,我们去看run方法:

@Override
    public void run() {
        if (!stopped) {
            log.debug("Trigger heartbeat request.");
            // 详细说明待后面解析完从节点后在介绍
            for (HeartbeatMonitor heartbeatMonitor : getHeartbeatTargets().values()) {
                // TODO 发送心跳
                requestHeartbeat(heartbeatMonitor);
            }

            //等heartbeatPeriod=10s之后,再次执行this的run方法,来控制上面的for循环每隔10s执行一次,实现心跳的无限循环
            getMainThreadExecutor().schedule(this, heartbeatPeriod, TimeUnit.MILLISECONDS);
        }
    }

可以看到,当代码第一次执行到这里是,会先调用依次发送心跳的方法,关于这个for循环,我们会在后面的章节里详细解析,这里就先不细说。在发送完心跳之后又出现了一个延时线程池,在heartbeatPeriod(10秒)延时后,会再次触发this的run方法,也就是当前方法,到此就会进入无限的心跳循环,也是在这里构建完成无限心跳。

2.3.2、两个定时

分析完心跳的实现,我们回去看那两个定时服务是什么:

首先进入slotManager.start方法并选择SlotManagerImpl实现:

@Override
    public void start(
            ResourceManagerId newResourceManagerId,
            Executor newMainThreadExecutor,
            ResourceActions newResourceActions) {
        LOG.info("Starting the SlotManager.");

        this.resourceManagerId = Preconditions.checkNotNull(newResourceManagerId);
        mainThreadExecutor = Preconditions.checkNotNull(newMainThreadExecutor);
        resourceActions = Preconditions.checkNotNull(newResourceActions);

        started = true;

        /*
        TODO 定时任务checkTaskManagerTimeoutsAndRedundancy
         每隔30秒检查一次闲置的TaskManager
         */
        taskManagerTimeoutsAndRedundancyCheck =
                scheduledExecutor.scheduleWithFixedDelay(
                        () ->
                                mainThreadExecutor.execute(
                                        () -> checkTaskManagerTimeoutsAndRedundancy()),
                        0L,
                        taskManagerTimeout.toMilliseconds(),
                        TimeUnit.MILLISECONDS);

        /*
        TODO 定时任务 checkSlotRequestTimeouts
         Slot在申请中是状态为PendingRequest, 这个定时任务就是来检测那些已经超过5分钟的pendingRequest
         也就是超时的Slot
         */
        slotRequestTimeoutCheck =
                scheduledExecutor.scheduleWithFixedDelay(
                        () -> mainThreadExecutor.execute(() -> checkSlotRequestTimeouts()),
                        0L,
                        slotRequestTimeout.toMilliseconds(),
                        TimeUnit.MILLISECONDS);

        registerSlotManagerMetrics();
    }

可以看到,这两个定时任务分别为:

1、闲置TaskManager的定时检查,这里当我们是yarn-session模式时,会定时(30秒)检查一次闲置的TaskManager,当有闲置时间超过30秒的Taskmanager是,回去将该从节点回收,并释放资源。

2、定时检查超时的Slot申请,Slot在申请中是状态为PendingRequest, 这个定时任务就是来检测那些已经超过5分钟的pendingRequest 也就是超时的Slot

我们进入超时slot的检查方法checkSlotRequestTimeouts:

 private void checkSlotRequestTimeouts() {
        if (!pendingSlotRequests.isEmpty()) {
            long currentTime = System.currentTimeMillis();

            Iterator> slotRequestIterator =
                    pendingSlotRequests.entrySet().iterator();

            // TODO 遍历SlotRequest列表
            while (slotRequestIterator.hasNext()) {
                PendingSlotRequest slotRequest = slotRequestIterator.next().getValue();

                // 判断已超时的slotRequest
                if (currentTime - slotRequest.getCreationTimestamp()
                        >= slotRequestTimeout.toMilliseconds()) {
                    // 移除掉已超时的slotRequest
                    slotRequestIterator.remove();

                    // TODO ResourceManager已经分配给某个Job的Slot,但是该Slot还处于pendingRequest状态
                    if (slotRequest.isAssigned()) {
                        // 取消
                        cancelPendingSlotRequest(slotRequest);
                    }

                    // TODO 通知失败
                    resourceActions.notifyAllocationFailure(
                            slotRequest.getJobId(),
                            slotRequest.getAllocationId(),
                            new TimeoutException("The allocation could not be fulfilled in time."));
                }
            }
        }
    }

检查流程为:

1、遍历所有slot请求列表

2、判断已超时的slotRequest

3、移除超时SlotRequest

4、 如果ResourceManager已经分配给某个Job的Slot,但是该Slot还处于pendingRequest状态

5、则先取消当前的slot分配

6、再通知该slot分配失败

到此为止,ResourceManager就已经启动完毕,最后我们总结一下ResourceManager的启动工作:

三、总结:

ResourceManager的启动要点有以下几点:

1、ResourceManager是一个RpcEndpoint(Actor),当构建好对象后启动时会触发onStart(Actor的perStart生命周期方法)方法
2、ResourceManager也是一个LeaderContendr,也会执行竞选, 会执行竞选结果方法
3、ResourceManagerService 具有两个心跳服务和两个定时服务:
         a、两个心跳服务:    
                  ⅰ、从节点和主节点之间的心跳
                  ⅱ、Job的主控程序和主节点之间的心跳
         b、两个定时服务:
                  ⅰ、TaskManager 的超时检查服务
                  ⅱ、Slot申请的 超时检查服务

在下一章中,我们继续介绍Dispatcher的构建和启动过程!

你可能感兴趣的:(大数据平台-架构之道,大数据平台-源码解析,Flink,源码解析,flink,大数据,flink源码)