❀项目复现❀基于CIFAR-10+LeNet的训练实现

环境要求pytorch

基于pytorch深度学习框架,利用数据集CIFAR-10,在网络lenet5上进行 训练。

❀项目复现❀基于CIFAR-10+LeNet的训练实现_第1张图片

在torch中datasets可直接加载,所以不用单独下载。

Step1:在pycharm中写入lenet5main.py

写入如下代码,用来下载数据集

#cifar10数据集+LeNet10网络实现训练

import torch
#DataLoader可加载多个
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms

def datadownload():
    batchsz=32
    #一次加载一张
    cifar_train=datasets.CIFAR10('cifar',True,transform=transforms.Compose([
        transforms.Resize((32,32)),
        transforms.ToTensor()
    ]),download=True)
    cifar_train=DataLoader(cifar_train,batch_size=batchsz,shuffle=True)

    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download = True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

     #测试数据
    #利用iter进行迭代,打印出shape
    x,label=iter(cifar_train).next()
    print('x:',x.shape,'label:',label.shape)

if __name__ == '__main__':
    datadownload()

下载后

❀项目复现❀基于CIFAR-10+LeNet的训练实现_第2张图片

 Step2:创建lenet5.py

主要是卷积网络lenet5的网络结构

#cifar10数据集+LeNet5网络训练
import torch
from torch import nn
from torch.nn import functional as F

class Lenet5(nn.Module):
    def __init__(self):
        super(Lenet5, self).__init__()
        #输入二维图像,先经过俩层卷积层到池化层,再经过全连接层,最后使用softmax分类作为输出层
        self.conv_unit=nn.Sequential(
            #x输入图像统一归一化为32*32输出是6
            nn.Conv2d(3,6,kernel_size=5,stride=1,padding=0),
            nn.AvgPool2d(kernel_size=2,stride=2,padding=0),

            nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),

        )
        #隐藏层
        #第6层全连接层
        self.fc_unit=nn.Sequential(
            nn.Linear(16*5*5,120),
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
        )

        #分类问题使用交叉熵
        #self.criteon=nn.CrossEntropyLoss()

    def forward(self,x):
        batchsz=x.size(0)
        x=self.conv_unit(x)
        x=x.view(batchsz,16*5*5)
        logits=self.fc_unit(x)


        #pred=F.softmax(logits,dim=1)
        #loss=self.criteon(logits,y)
        return logits

def main():
    net=Lenet5()
    #调用主类方法
    tmp = torch.randn(2, 3, 32, 32)
    out = net(tmp)
    print('lenet5 out:', out.shape)




if __name__ == '__main__':
    main()




Step3:填补lenet5main.py内容

#利用cifar10数据集+LeNet5网络进行训练
#构建主函数
import torch
#DataLoader可加载多个数据
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch import nn,optim
from LeNET5.lenet5 import Lenet5


def main():
    batchsz=32
    #一次加载一张
    cifar_train=datasets.CIFAR10('cifar',True,transform=transforms.Compose([
        transforms.Resize((32,32)),
        transforms.ToTensor()
    ]),download=True)
    cifar_train=DataLoader(cifar_train,batch_size=batchsz,shuffle=True)

    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download = True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

     #测试数据
    #利用iter进行迭代,打印出shape
    #x,label=iter(cifar_train).next()
    #print('x:',x.shape,'label:',label.shape)

    # 使用cpu计算,如果有cuda,可用cuda
    device = torch.device('cpu')
    model=Lenet5().to(device)
    criteon=nn.CrossEntropyLoss()
    optimizer=optim.Adam(model.parameters(),lr=1e-3)
    print(model)


    for epoch in range(1000):

        model.train()
        for batchidx,(x,label) in enumerate(cifar_train):
            x,label=x.to(device),label.to(device)
            logits=model(x)
            loss=criteon(logits,label)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        print(epoch,loss.item())

        model.eval()
        with torch.no_grad():
         #test
            total_correct=0
            total_num=0
            for x,label in cifar_test:
                x, label = x.to(device), label.to(device)
                logits = model(x)
            #在1维上最大的一个值
                pred=logits.argmax(dim=1)
                total_correct+=torch.eq(pred,label).float().sum().item()
                total_num+=x.size(0)

            acc=total_correct/total_num
            print(epoch,acc)



        print(epoch,loss.item())





if __name__ == '__main__':
    main()

结果:

❀项目复现❀基于CIFAR-10+LeNet的训练实现_第3张图片

你可能感兴趣的:(❀项目复现❀,计算机视觉,神经网络,pytorch)