MMLAB系列:mmsegmentation的使用

1.数据集的制作和使用

        数据可以使用labelme进行数据标注,labelme还提供了数据集格式转换脚本,可以将labelme数据集格式转换为voc数据集格式

MMLAB系列:mmsegmentation的使用_第1张图片

转换后:

JPEGImages为图片,SegmentationClassPNG为标签

MMLAB系列:mmsegmentation的使用_第2张图片 

 2.配置文件的修改

        1.运行train.py,生成完整的模型配置文件,对完整的模型配置文件进行修改。

配置文件每个GPU的batch_size一定要大于1 

# E:/MMLAB/mmsegmentation/tools/models/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
    type='EncoderDecoder',
    pretrained='open-mmlab://resnet50_v1c',
    backbone=dict(
        type='ResNetV1c',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        dilations=(1, 1, 2, 4),
        strides=(1, 2, 1, 1),
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        norm_eval=False,
        style='pytorch',
        contract_dilation=True),
    decode_head=dict(
        type='DepthwiseSeparableASPPHead',
        in_channels=2048,
        in_index=3,
        channels=512,
        dilations=(1, 12, 24, 36),
        c1_in_channels=256,
        c1_channels=48,
        dropout_ratio=0.1,
        num_classes=2,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=1024,
        in_index=2,
        channels=256,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=2,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='slide', crop_size=(480, 480), stride=(320, 320)))
dataset_type = 'PascalContextDataset'
data_root = 'E:/MMLAB/mmsegmentation/data/my_cell_voc'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (520, 520)
crop_size = (480, 480)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=(520, 520), ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=(480, 480), cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size=(480, 480), pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(520, 520),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=1,
    train=dict(
        type='PascalContextDataset',
        data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
        img_dir='JPEGImages',
        ann_dir='SegmentationClassPNG',
        split='train.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations'),
            dict(type='Resize', img_scale=(520, 520), ratio_range=(0.5, 2.0)),
            dict(type='RandomCrop', crop_size=(480, 480), cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size=(480, 480), pad_val=0, seg_pad_val=255),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_semantic_seg'])
        ]),
    val=dict(
        type='PascalContextDataset',
        data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
        img_dir='JPEGImages',
        ann_dir='SegmentationClassPNG',
        split='val.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(520, 520),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='PascalContextDataset',
        data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
        img_dir='JPEGImages',
        ann_dir='SegmentationClassPNG',
        split='test.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(520, 520),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
log_config = dict(
    interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = ''
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(type='SGD', lr=0.004, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=100)
checkpoint_config = dict(by_epoch=False, interval=50)
evaluation = dict(interval=1, metric='mIoU', pre_eval=True)
work_dir = './work_dirs/deeplabv3plus_r50-d8_480x480_40k_pascal_context'
gpu_ids = [0]
auto_resume = False

        2.修改mmsegmentation/mmseg/datasets/voc.py文件中的类别和颜色

MMLAB系列:mmsegmentation的使用_第3张图片 

         3.修改mmsegmentation/mmseg/core/evaluation/class_names.py中的voc_classes()中的类别

MMLAB系列:mmsegmentation的使用_第4张图片

 展示验证数据

如图所示:mmsegmentation/tools/browse_dataset.py可以展示数据

MMLAB系列:mmsegmentation的使用_第5张图片

 3.模型的测试以及推理

        mmsegmentation/demo/image_demo.py可以进行模型的推理,参数有图片路径、配置文件、权重文件等。 同时,需要修改mmseg.core.evaluation相应的类别以及颜色

MMLAB系列:mmsegmentation的使用_第6张图片 

 运行测试文件结果:

MMLAB系列:mmsegmentation的使用_第7张图片

 

 

你可能感兴趣的:(图像分割,计算机视觉,人工智能,深度学习,算法)