redis内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
内存。
如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以配置内存淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。
Redis 缓存有哪些淘汰策略?
会进行淘汰的 7 种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:
策略 | 规则 |
---|---|
volatile-ttl | 在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。 |
volatile-random | 在设置了过期时间的键值对中,进行随机删除。 |
volatile-lru | 使用 LRU 算法筛选设置了过期时间的键值对 |
volatile-lfu | 使用 LFU 算法选择设置了过期时间的键值对 |
策略 | 规则 |
---|---|
allkeys-random | 从所有键值对中随机选择并删除数据; |
allkeys-lru | 使用 LRU 算法在所有数据中进行筛选 |
vallkeys-lfu | 使用 LFU 算法在所有数据中进行筛选 |
是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。
那具体是怎么筛选的呢?LRU 会把所有的数据组织成一个链表,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。
LRU 算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在 MRU 端;长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到 LRU 端,在缓存满时,就优先删除它。
问题:LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
解决:
在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去。
当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。
使用建议:
本质上是为了性能。
Redis 这种对性能要求极高的数据库,在系统调用上的优化也做到了极致。
获取机器时钟本质上也是一个「系统调用」,对于 Redis 这种动不动每秒上万的 QPS,如果每次都触发一次系统调用,这么频繁的操作也是一笔不小的开销。
所以,Redis 用一个定时任务(serverCron 函数),以固定频率触发系统调用获取机器时钟,然后把机器时钟挂到 server 的全局变量下,这相当于维护了一个「本地缓存」,当需要获取时钟时,直接从全局变量获取即可,节省了大量的系统调用开销。
一旦被淘汰的数据选定后,如果这个数据是干净数据,那么我们就直接删除;如果这个数据是脏数据,我们需要把它写回数据库。
那怎么判断一个数据到底是干净的还是脏的呢?
即使淘汰的数据是脏数据,Redis 也不会把它们写回数据库。所以,我们在使用 Redis 缓存时,如果数据被修改了,需要在数据修改时就将它写回数据库。否则,这个脏数据被淘汰时,会被 Redis 删除,而数据库里也没有最新的数据了。
1、控制key的数量:当使用Redis存储大量数据时,通常会存在大量键,过多的键同样会消耗大量内存。Redis本质是一个数据结构服务器,它为我们提供多种数据结构,如hash,list,set,zset 等结构。使用Redis时不要进入一个误区,大量使用get/set这样的API,把Redis当成Memcached使用。对于存储相同的数据内容利用Redis的数据结构降低外层键的数量,也可以节省大量内存。
2、缩减键值对象,降低Redis内存使用最直接的方式就是缩减键(key)和值(value)的长度。
3、编码优化。Redis对外提供了string,list,hash,set,zet等类型,但是Redis内部针对不同类型存在编码的概念,所谓编码就是具体使用哪种底层数据结构来实现。编码不同将直接影响数据的内存占用和读写效率。
type字段:
利用集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面。
encoding字段:
采用不同的编码实现内存占用存在明显差异
lru字段:
开发提示:可以使用scan + object idletime 命令批量查询哪些键长时间未被访问,找出长时间不访问的键进行清理降低内存占用。
refcount字段:
当对象为整数且范围在[0-9999]时,Redis可以使用共享对象的方式来节省内存。
ptr字段 :
开发提示:高并发写入场景中,在条件允许的情况下建议字符串长度控制在39字节以内,减少创建redisObject内存分配次数从而提高性能。
为什么开启maxmemory和LRU淘汰策略后对象池无效?
LRU算法需要获取对象最后被访问时间,以便淘汰最长未访问数据,每个对象最后访问时间存储在redisObject对象的lru字段。对象共享意味着多个引用共享同一个redisObject,这时lru字段也会被共享,导致无法获取每个对象的最后访问时间。如果没有设置maxmemory,直到内存被用尽Redis也不会触发内存回收,所以共享对象池可以正常工作。
综上所述,共享对象池与maxmemory+LRU策略冲突,使用时需要注意。
为什么只有整数对象池?
首先整数对象池复用的几率最大,其次对象共享的一个关键操作就是判断相等性,Redis之所以只有整数对象池,是因为整数比较算法时间复杂度为O(1),只保留一万个整数为了防止对象池浪费。如果是字符串判断相等性,时间复杂度变为O(n),特别是长字符串更消耗性能(浮点数在Redis内部使用字符串存储)。对于更复杂的数据结构如hash,list等,相等性判断需要O(n2)。对于单线程的Redis来说,这样的开销显然不合理,因此Redis只保留整数共享对象池。
字符串结构:
预分配机制:
字符串重构:基于hash类型的二级编码方式。
当Redis内存不足时,首先考虑的问题不是加机器做水平扩展,应该先尝试做内存优化。当遇到瓶颈时,再去考虑水平扩展。即使对于集群化方案,垂直层面优化也同样重要,避免不必要的资源浪费和集群化后的管理成本。