学过计算机网络的同学,都知道滑动窗口协议(Sliding Window Protocol),该协议是 TCP协议 的一种应用,用于网络数据传输时的流量控制,以避免拥塞的发生。该协议允许发送方在停止并等待确认前发送多个数据分组。由于发送方不必每发一个分组就停下来等待确认。因此该协议可以加速数据的传输,提高网络吞吐量。
滑动窗口算法其实和这个是一样的,只是用的地方场景不一样,可以根据需要调整窗口的大小,有时也可以是固定窗口大小。
滑动窗口算法在一个特定大小的字符串或数组上进行操作,而不在整个字符串和数组上操作,这样就降低了问题的复杂度,从而也达到降低了循环的嵌套深度。其实这里就可以看出来滑动窗口主要应用在数组和字符串上。
如下图所示,设定滑动窗口(window)大小为 3,当滑动窗口每次划过数组时,计算当前滑动窗口中元素的和,得到结果 res。
可以用来解决一些查找满足一定条件的连续区间的性质(长度等)的问题。由于区间连续,因此当区间发生变化时,可以通过旧有的计算结果对搜索空间进行剪枝,这样便减少了重复计算,降低了时间复杂度。往往类似于“ 请找到满足 xx 的最 x 的区间(子串、子数组)的 xx ”这类问题都可以使用该方法进行解决。
需要注意的是,滑动窗口算法更多的是一种思想,而非某种数据结构的使用。
在介绍滑动窗口的框架时候,大家先从字面理解下:
滑动:说明这个窗口是移动的,也就是移动是按照一定方向来的。
窗口:窗口大小并不是固定的,可以不断扩容直到满足一定的条件;也可以不断缩小,直到找到一个满足条件的最小窗口;当然也可以是固定大小。
为了便于理解,这里采用的是字符串来讲解。但是对于数组其实也是一样的。滑动窗口算法的思路是这样:
第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动。
对于非固定大小的滑动窗口,可以简单地写出如下伪码框架:
string s, t;
// 在 s 中寻找 t 的「最小覆盖子串」
int left = 0, right = 0;
string res = s;
while(right < s.size()) {
window.add(s[right]);
right++;
// 如果符合要求,说明窗口构造完成,移动 left 缩小窗口
while (window 符合要求) {
// 如果这个窗口的子串更短,则更新 res
res = minLen(res, window);
window.remove(s[left]);
left++;
}
}
return res;
对于固定窗口大小,可以总结如下:
// 固定窗口大小为 k
string s;
// 在 s 中寻找窗口大小为 k 时的所包含最大元音字母个数
int right = 0;
while(right < s.size()) {
window.add(s[right]);
right++;
// 如果符合要求,说明窗口构造完成,
if (right>=k) {
// 这是已经是一个窗口了,根据条件做一些事情
// ... 可以计算窗口最大值等
// 最后不要忘记把 right -k 位置元素从窗口里面移除
}
}
return res;
尽可能使字符串相等
给你两个长度相同的字符串,s 和 t。
将 s 中的第 i 个字符变到 t 中的第 i 个字符需要 |s[i] - t[i]| 的开销(开销可能为 0),也就是两个字符的 ASCII 码值的差的绝对值。
用于变更字符串的最大预算是 maxCost。在转化字符串时,总开销应当小于等于该预算,这也意味着字符串的转化可能是不完全的。
如果你可以将 s 的子字符串转化为它在 t 中对应的子字符串,则返回可以转化的最大长度。
如果 s 中没有子字符串可以转化成 t 中对应的子字符串,则返回 0。
输入:s = “abcd”, t = “bcdf”, cost = 3
输出:3
解释:s 中的 “abc” 可以变为 “bcd”。开销为 3,所以最大长度为 3。
class Solution {
public int equalSubstring(String s, String t, int maxCost) {
int left = 0, right =0;
int sum = 0;
int res = 0; // 构造窗口
while (right < s.length()) {
sum += Math.abs(s.charAt(right) - t.charAt(right));
right++; // 窗口构造完成,这时候要根据条件当前的窗口调整窗口大小
while (sum > maxCost) {
sum -= Math.abs(s.charAt(left) - t.charAt(left));
left++;
} // 记录此时窗口的大小
res = Math.max(res, right -left);
}
return res;
}
}