PCI总线---PCI设备扫描过程


8.2 PCI设备扫描过程

        Linux内核具备多种PCI的扫描方式,它们之间大同小异。

        本节使用传统的扫描方式 执行 pci_legacy_init函数,定义在legacy.c 文件中 :

static int __init pci_legacy_init(void)
{
	if (!raw_pci_ops) {
		printk("PCI: System does not support PCI\n");
		return 0;
	}

	if (pcibios_scanned++)
		return 0;

	printk("PCI: Probing PCI hardware\n");
	pci_root_bus = pcibios_scan_root(0);
	if (pci_root_bus)
		pci_bus_add_devices(pci_root_bus);

	pcibios_fixup_peer_bridges();

	return 0;
}

        pci_legacy_init函数 

首先 --扫描0号总线, 扫描成功,则把0号总线作为系统的根总线

pci_root_bus = pcibios_scan_root(0);


然后 --把0号总线扫描到的设备加入到一个全局的PCI设备链表

最后 --调用pcibios_fixup_peer_bridges 对BIOS提供的PCI总线进行进一步的扫描

/*
 * Discover remaining PCI buses in case there are peer host bridges.
 * We use the number of last PCI bus provided by the PCI BIOS.
 */
static void __devinit pcibios_fixup_peer_bridges(void)
{
	int n, devfn;

	if (pcibios_last_bus <= 0 || pcibios_last_bus >= 0xff)
		return;
	DBG("PCI: Peer bridge fixup\n");

	for (n=0; n <= pcibios_last_bus; n++) {
		u32 l;
		if (pci_find_bus(0, n))
			continue;
		for (devfn = 0; devfn < 256; devfn += 8) {
			if (!raw_pci_ops->read(0, n, devfn, PCI_VENDOR_ID, 2, &l) &&
			    l != 0x0000 && l != 0xffff) {
				DBG("Found device at %02x:%02x [%04x]\n", n, devfn, l);
				printk(KERN_INFO "PCI: Discovered peer bus %02x\n", n);
				pci_scan_bus(n, &pci_root_ops, NULL);
				break;
			}
		}
	}
}

        啊

        啊

        啊

8.2.1 扫描0号总线

        扫描 0号总线调用的是pcibios_scan_root 函数,代码如下:

struct pci_bus * __devinit pcibios_scan_root(int busnum)
{
	struct pci_bus *bus = NULL;

	dmi_check_system(pciprobe_dmi_table);

	while ((bus = pci_find_next_bus(bus)) != NULL) {
		if (bus->number == busnum) {
			/* Already scanned */
			return bus;
		}
	}

	printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busnum);

	return pci_scan_bus_parented(NULL, busnum, &pci_root_ops, NULL);
}

        首先遍历所有的PCI总线,检查指定的总线是否已经扫描过,如果已经扫描,则直接返回。如果尚未扫描,则调用pci_bus_parented函数扫描总线。

        啊

        啊

        啊

        啊

8.2.1 扫描总线上的PCI设备

        pci_bus_parented函数 的功能是扫描总线上可能接入的256个PCI设备,如果扫描到的PCI设备是 桥设备,还要递归扫描桥设备,把桥设备可能接入的PCI设备扫描出来,代码清单如下:

struct pci_bus * __devinit pci_scan_bus_parented(struct device *parent,
		int bus, struct pci_ops *ops, void *sysdata)
{
	struct pci_bus *b;

	b = pci_create_bus(parent, bus, ops, sysdata);
	if (b)
		b->subordinate = pci_scan_child_bus(b);
	return b;
}

        pci_scan_bus_parented 函数可分成两个步骤:

第一步:创建一个总线对象

第二步:调用pci_scan_child_bus 对创建的总线对象进行递归扫描

1、创建一个总线对象

        pci_create_bus函数,parent参数为空NULL,说明这条总线没有父设备,是一条根总线

        1)pci_create_bus第一部分是创建一个总线对象和一个设备对象,代码如下:

struct pci_bus * __devinit pci_create_bus(struct device *parent,
		int bus, struct pci_ops *ops, void *sysdata)
{
	int error;
	struct pci_bus *b;
	struct device *dev;

	b = pci_alloc_bus();
	if (!b)
		return NULL;

	//--申请一个dev结构 --
	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev){
		kfree(b);
		return NULL;
	}

	b->sysdata = sysdata;
	b->ops = ops;

	//--检查是否被创建
	if (pci_find_bus(pci_domain_nr(b), bus)) {
		/* If we already got to this bus through a different bridge, ignore it */
		pr_debug("PCI: Bus %04x:%02x already known\n", pci_domain_nr(b), bus);
		goto err_out;
	}

	//--创建总线加入PCI总线链表
	down_write(&pci_bus_sem);
	list_add_tail(&b->node, &pci_root_buses);
	up_write(&pci_bus_sem);

        PCI总线本身是一个设备,所以除了总线对象外,还要为它创建一个设备对象。总线对象是链接到一个全局的链表头pci_root_buses,这样通过这条链表,可以遍历所有的PCI总线。

        2)pci_create_bus函数第二部分执行结构和对象的注册

	//设置Dev结构并登记到系统
	memset(dev, 0, sizeof(*dev));
	dev->parent = parent;
	dev->release = pci_release_bus_bridge_dev;
	sprintf(dev->bus_id, "pci%04x:%02x", pci_domain_nr(b), bus);
	error = device_register(dev);
	if (error)
		goto dev_reg_err;
	b->bridge = get_device(dev);

	b->class_dev.class = &pcibus_class;
	sprintf(b->class_dev.class_id, "%04x:%02x", pci_domain_nr(b), bus);
	error = class_device_register(&b->class_dev);
	if (error)
		goto class_dev_reg_err;
	error = class_device_create_file(&b->class_dev, &class_device_attr_cpuaffinity);
	if (error)
		goto class_dev_create_file_err;

	/* Create legacy_io and legacy_mem files for this bus */
	pci_create_legacy_files(b);

	error = sysfs_create_link(&b->class_dev.kobj, &b->bridge->kobj, "bridge");
	if (error)
		goto sys_create_link_err;

	b->number = b->secondary = bus;

        首先把设备对象注册到系统,这个过程6章已经分析过了。其次四注册PCI总线类 和 sysfs文件系统创建符号链接

        3)pci_create_bus函数最后设置PCI总线的资源

	b->resource[0] = &ioport_resource;
	b->resource[1] = &iomem_resource;

	return b;

        PCI总线资源有两类,

一类是:I/O端口;

另一类:I/O内存;

        总线上所有设备的 端口 和 内存 组成一个空间,为了避免冲突,内存设置了全局的数据结构 ioport_resoure 和 iomem_resource,分别保存所有的I/O端口资源 和 所有的I/O内存资源 。

2、扫描总线

        现在返回pci_scan_bus_parented函数,当成功创建总线对象后,开始扫描这条总线,调用pci_scan_child_bus

unsigned int __devinit pci_scan_child_bus(struct pci_bus *bus)
{
	unsigned int devfn, pass, max = bus->secondary;
	struct pci_dev *dev;

	pr_debug("PCI: Scanning bus %04x:%02x\n", pci_domain_nr(bus), bus->number);

	/* Go find them, Rover! */
	//--扫描总线下面的256个设备
	for (devfn = 0; devfn < 0x100; devfn += 8)
		pci_scan_slot(bus, devfn);

	/*
	 * After performing arch-dependent fixup of the bus, look behind
	 * all PCI-to-PCI bridges on this bus.
	 */
	pr_debug("PCI: Fixups for bus %04x:%02x\n", pci_domain_nr(bus), bus->number);
	pcibios_fixup_bus(bus);
	/*  扫描子总线,分两次扫描,第一次扫描BIOS发现的总线  */
	for (pass=0; pass < 2; pass++)
		list_for_each_entry(dev, &bus->devices, bus_list) {
			if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE ||
			    dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)
				max = pci_scan_bridge(bus, dev, max, pass);
		}

	/*
	 * We've scanned the bus and so we know all about what's on
	 * the other side of any bridges that may be on this bus plus
	 * any devices.
	 *
	 * Return how far we've got finding sub-buses.
	 */
	pr_debug("PCI: Bus scan for %04x:%02x returning with max=%02x\n",
		pci_domain_nr(bus), bus->number, max);
	return max;
}

        扫描PCI总线试过递归过程。每条PCI总线可以配置32个多功能设备,每个多功能设备又可以安装8个子设备,总共就是256个设备。这256个设备中,有的设备可能是PCI桥,每个PCI桥下面又可以介入256设备。通过函数 pci_scan_slot 扫描每个多功能设备的8个子设备,通过pci_scan_bridge函数扫描PCI桥设备。对于桥设备,还要递归调用spi_scan_child_bus函数扫描本 桥设备 下面可能接入的PCI设备。

        啊

8.2.3 扫描多功能设备

        扫描PCI 多功能设备和扫描 桥设备 有重复的地方,因此本节以扫描多功能设备的函数 pci_scan_slot 为例进行分析,代码如下:

/**
 * pci_scan_slot - scan a PCI slot on a bus for devices.
 * @bus: PCI bus to scan
 * @devfn: slot number to scan (must have zero function.)
 *
 * Scan a PCI slot on the specified PCI bus for devices, adding
 * discovered devices to the @bus->devices list.  New devices
 * will have an empty dev->global_list head.
 */
int __devinit pci_scan_slot(struct pci_bus *bus, int devfn)
{
	int func, nr = 0;
	int scan_all_fns;

	scan_all_fns = pcibios_scan_all_fns(bus, devfn);

	for (func = 0; func < 8; func++, devfn++) {
		struct pci_dev *dev;

		dev = pci_scan_single_device(bus, devfn);
		if (dev) {
			nr++;

			/*
		 	 * If this is a single function device,
		 	 * don't scan past the first function.
		 	 */
			if (!dev->multifunction) {
				if (func > 0) {
					dev->multifunction = 1;
				} else {
 					break;
				}
			}
		} else {
			if (func == 0 && !scan_all_fns)
				break;
		}
	}
	return nr;
}

        pci_scan_slot函数从 0 号设备开始进行扫描,如果发现是单功能设备,不再继续扫描,如果发现是多功能设备,则进行8次扫描

8.2.4 扫描单个设备

        扫描单个设备调用 pci_scan_single_device 函数,输入参数是 总线结构 和 设备功能号,代码:

pci_scan_single_device(struct pci_bus *bus, int devfn)
{
	struct pci_dev *dev;

	dev = pci_scan_device(bus, devfn);
	if (!dev)
		return NULL;

	pci_device_add(dev, bus);
	pci_scan_msi_device(dev);

	return dev;
}

        pci_scan_single_device 函数调用 pci_scan_device 扫描设备,扫描成功后把设备加入总线的设备链表。 最后的pci_scan_msi_device函数是检查设备的MSI能力MSI和 设备的中断有关。

        啊

8.2.5 扫描设备信息

        扫描PCI设备 通过读取PCI设备的配置空间完成,这部分原理在 第3章介绍过。扫描设备的代码pci_scan_device 函数:

pci_scan_device(struct pci_bus *bus, int devfn)
{
	struct pci_dev *dev;
	u32 l;
	u8 hdr_type;
	int delay = 1;

	//--读PCI设备制造商的ID--
	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l))
		return NULL;

	/* some broken boards return 0 or ~0 if a slot is empty: */
	if (l == 0xffffffff || l == 0x00000000 ||
	    l == 0x0000ffff || l == 0xffff0000)
		return NULL;

	/* Configuration request Retry Status */
/** --处理需要重复读配置信息的情况--  **/
	while (l == 0xffff0001) {
		msleep(delay);
		delay *= 2;
		if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l))
			return NULL;
		/* Card hasn't responded in 60 seconds?  Must be stuck. */
		if (delay > 60 * 1000) {
			printk(KERN_WARNING "Device %04x:%02x:%02x.%d not "
					"responding\n", pci_domain_nr(bus),
					bus->number, PCI_SLOT(devfn),
					PCI_FUNC(devfn));
			return NULL;
		}
	}

        pci_scan_device函数第一部分读PCI设备制造商的ID,所有制造商都要分配厂商的ID号,从ID号就可以获得设备厂商信息。

        这部分代码要处理异常情况,某些设备可能返回重试状态,这种情况要延迟一段时间,再次尝试读制造商的ID,如果延迟时间超过60秒,还没有读到ID,则返回失败。

   ----pci_scan_device函数第二部分为设备分配一个PCI设备结构,然后根据设备配置空间读取的信息对设备进行赋值

/*** --- 读PCI设备的类型 --- ***/	
	if (pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type))
		return NULL;
/*** --- 申请一个PCI设备结构 --- ***/
	dev = kzalloc(sizeof(struct pci_dev), GFP_KERNEL);
	if (!dev)
		return NULL;
/*** --- 设置PCI设备的参数,包括类型、制造商、是否多功能 --- ***/
	dev->bus = bus;
	dev->sysdata = bus->sysdata;
	dev->dev.parent = bus->bridge;
	dev->dev.bus = &pci_bus_type;
	dev->devfn = devfn;
	dev->hdr_type = hdr_type & 0x7f;
	dev->multifunction = !!(hdr_type & 0x80);
	dev->vendor = l & 0xffff;
	dev->device = (l >> 16) & 0xffff;
	dev->cfg_size = pci_cfg_space_size(dev);
	dev->error_state = pci_channel_io_normal;

	/* Assume 32-bit PCI; let 64-bit PCI cards (which are far rarer)
	   set this higher, assuming the system even supports it.  */
/*** --- 设置设备的dma 地址掩码 --- ***/
	dev->dma_mask = 0xffffffff;
	if (pci_setup_device(dev) < 0) {
		kfree(dev);
		return NULL;
	}

	return dev;
}

        此时,只读取配置空间的制造商ID 和头部信息(HEADER_TYPE),信息的进一步读取在函数pci_setup_device中完成,这个函数同时设置PCI设备的信息:

/**
 * pci_setup_device - fill in class and map information of a device
 * @dev: the device structure to fill
 *
 * Initialize the device structure with information about the device's 
 * vendor,class,memory and IO-space addresses,IRQ lines etc.
 * Called at initialisation of the PCI subsystem and by CardBus services.
 * Returns 0 on success and -1 if unknown type of device (not normal, bridge
 * or CardBus).
 */
static int pci_setup_device(struct pci_dev * dev)
{
	u32 class;

	sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(dev->bus),
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn));
/*** -- 读类别 -- ***/
	pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
	class >>= 8;				    /* upper 3 bytes */
	dev->class = class;
	class >>= 8;

	pr_debug("PCI: Found %s [%04x/%04x] %06x %02x\n", pci_name(dev),
		 dev->vendor, dev->device, class, dev->hdr_type);

	/* "Unknown power state" */
	dev->current_state = PCI_UNKNOWN;

	/* Early fixups, before probing the BARs */
	pci_fixup_device(pci_fixup_early, dev);
	class = dev->class >> 8;

        pci_setup_device函数第一部分是读设备类的信息:

        ------高24位:class信息

        ------低8位  :revision信息,并根据读取的信息设置PCI设备

        

        pci_setup_device函数第二部分根据设备类型读需要的信息

	switch (dev->hdr_type) {		    /* header type */
	case PCI_HEADER_TYPE_NORMAL:		    /* standard header */
		if (class == PCI_CLASS_BRIDGE_PCI)
			goto bad;
/*** ------   读中断信息   ------ ***/
		pci_read_irq(dev);
/*** ------   读配置空间的资源信息 6条信息  ------ ***/
		pci_read_bases(dev, 6, PCI_ROM_ADDRESS);
/*** ------   读子系统厂商的ID   ------ ***/
		pci_read_config_word(dev, PCI_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor);
/*** ------   读子系统的ID   ------ ***/
		pci_read_config_word(dev, PCI_SUBSYSTEM_ID, &dev->subsystem_device);
		break;

	case PCI_HEADER_TYPE_BRIDGE:		    /* bridge header */
		if (class != PCI_CLASS_BRIDGE_PCI)
			goto bad;
		/* The PCI-to-PCI bridge spec requires that subtractive
		   decoding (i.e. transparent) bridge must have programming
		   interface code of 0x01. */ 
		pci_read_irq(dev);
		dev->transparent = ((dev->class & 0xff) == 1);
		pci_read_bases(dev, 2, PCI_ROM_ADDRESS1);
		break;

	case PCI_HEADER_TYPE_CARDBUS:		    /* CardBus bridge header */
		if (class != PCI_CLASS_BRIDGE_CARDBUS)
			goto bad;
		pci_read_irq(dev);
		pci_read_bases(dev, 1, 0);
		pci_read_config_word(dev, PCI_CB_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor);
		pci_read_config_word(dev, PCI_CB_SUBSYSTEM_ID, &dev->subsystem_device);
		break;

	default:				    /* unknown header */
		printk(KERN_ERR "PCI: device %s has unknown header type %02x, ignoring.\n",
			pci_name(dev), dev->hdr_type);
		return -1;

	bad:
		printk(KERN_ERR "PCI: %s: class %x doesn't match header type %02x. Ignoring class.\n",
		       pci_name(dev), class, dev->hdr_type);
		dev->class = PCI_CLASS_NOT_DEFINED;
	}

	/* We found a fine healthy device, go go go... */
	return 0;
}

        设备有三种类型:通常的 PCI设备 、 PCI桥设备 和 CARDBUS设备。

        每种设备都要读中断信息资源信息。PCI设备的配置空间提供两种资源,一种是I/O端口,另一种是I/O内存。

        普通设备可以提供个资源信息,桥设备 只有 2 个资源信息。

        普通操作系统扫描PCI总线,目的是获得PCI设备的信息,然后为每个设备分配一个PCI设备结构。PCI总线扫描到设备之后,需要设备加载正确的驱动,这部分在67章中。



补充:

内核启动PCI总线枚举的过程中,跟踪到底层扫描总线上每个设备,都是通过每个设备的vendor ID来确定设备的有无,函数pci_bus_read_config_dword没有找到实现,只是找到了EXPORT_SYMBOL(pci_bus_read_config_dword)。

access.c 中

#define PCI_OP_WRITE(size,type,len) \
int pci_bus_write_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
{									\
	int res;							\
	unsigned long flags;						\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
	spin_lock_irqsave(&pci_lock, flags);				\
	res = bus->ops->write(bus, devfn, pos, len, value);		\
	spin_unlock_irqrestore(&pci_lock, flags);			\
	return res;							\
}

PCI_OP_READ(byte, u8, 1)
PCI_OP_READ(word, u16, 2)
PCI_OP_READ(dword, u32, 4)
PCI_OP_WRITE(byte, u8, 1)
PCI_OP_WRITE(word, u16, 2)
PCI_OP_WRITE(dword, u32, 4)

EXPORT_SYMBOL(pci_bus_read_config_byte);
EXPORT_SYMBOL(pci_bus_read_config_word);
EXPORT_SYMBOL(pci_bus_read_config_dword);
EXPORT_SYMBOL(pci_bus_write_config_byte);
EXPORT_SYMBOL(pci_bus_write_config_word);
EXPORT_SYMBOL(pci_bus_write_config_dword);

------看PCI_OP_READ宏定义,##是宏定义中用来字符串替换的,也就是将宏定义穿进来的参数字符串原封不动替换

这样也就有了函数pci_bus_read_config_byte/word/dword 等

        啊

        啊

你可能感兴趣的:(PCI总线---PCI设备扫描过程)