2022数学建模国赛A题思路建模/2022全国大学生数学建模A题思路建模/2022建模国赛A题思路模型/波浪能最大输出功率设计

						A 题 波浪能最大输出功率设计

获取: A题思路

随着经济和社会的发展,人类面临能源需求和环境污染的双重挑战,发展可再生能源产业已成为世界各国的共识。波浪能作为一种重要的海洋可再生能源,分布广泛,储量丰富,具有可观的应用前景。波浪能装置的能量转换效率是波浪能规模化利用的关键问题之一。图 1 为一种波浪能装置示意图,由浮子、振子、中轴以及能量输出系统(PTO,包括弹簧和阻尼器)构成,中振子、中轴及 PTO 被密封在浮子内部;浮子由质量均匀分布的圆柱壳体和圆锥壳体组成;两壳体连接部分有一个隔层,作为安装中轴的支撑面;子是穿在中轴上的圆柱体,通过 PTO 系统与中轴底座连接。在波浪的作用下,浮运动并带动振子运动(参见附件 1 和附件 2),通过两者的相对运动驱动阻尼器做功,并将所做的功作为能量输出。考虑海水是无粘及无旋的,浮子在性周期微幅波作用下会受到波浪激励力(矩)、附加惯性力(矩)、兴波阻尼力(矩)和静水恢复力(矩)。在分析下面问题时,忽略中轴、底座、隔及 PTO 的质量和各种摩擦
2022数学建模国赛A题思路建模/2022全国大学生数学建模A题思路建模/2022建模国赛A题思路模型/波浪能最大输出功率设计_第1张图片
请建立数学模型解决以下问题:
问题 1 如图 1 所示,中轴底座固定于隔层的中心位置,弹簧和直线阻尼器一端固定在振子上,一端固定在中轴底座上,振子沿中轴做往复运动。直线阻尼器的阻尼力与浮子和振子的相对速度成正比,比例系数为直线阻尼器的阻尼系数。考虑浮子在波浪中只做垂荡运动(参见附件 1),建立浮子与振子的运动模型。初始时刻浮子和振子平衡于静水中,利用附件 3 和附件 4 提供的参数值(其中波浪频率取 1.4005 s−1,这里及以下出现的频率均指圆频率,角度均采用弧度制),分别对以下两种情况计算浮子和振子在波浪激力 cos ( 为波浪激励力振幅, 为波浪频率)作用下前 40 个波浪周期内时间间隔为 0.2 s 的垂荡位移和速度:(1) 直线阻尼器的阻尼系数为 10000 N·s/m;(2) 直线阻尼器的阻尼系数与浮子和振子的相对速度的绝对值的幂成正比,其中比例系数取 10000,幂指数取 0.5。将结果存放在 result1-1.xlsx 和result1-2.xlsx 中。在论文中给出 10 s、20 s、40 s、60 s、100 s 时,浮子与振子的垂荡位移和速度。

问题 2 仍考虑浮子在波浪中只做垂荡运动,分别对以下两种情况建立确定直线阻尼器的最优阻尼系数的数学模型,使得 PTO 系统的平均输出功率最大:(1) 阻尼系数为常量,阻尼系数在区间 [0,100000] 内取值;(2) 阻尼系数与浮子和振子的相对速度的绝对值的幂成正比,比例系数在区间 [0,100000] 内取值,幂指数在区间 [0,1] 内取值。利用附件 3 和附件 4 提供的参数值(波浪频率取 2.2143 s−1)分别计算两种情况的最大输出功率及相应的最优阻尼系数。

问题 3 如图 2 所示,中轴底座固定于隔层的中心位置,中轴架通过转轴铰接于中轴底座
中心,中轴绕转轴转动,PTO 系统连接振子和转轴架,并处于中轴与转轴所在的平面。除了直
线阻尼器,在转轴上还安装了旋转阻尼器和扭转弹簧,直线阻尼器和旋转阻尼器共同做功输出
能量。在波浪的作用下,浮子进行摇荡运动,并通过转轴及扭转弹簧和旋转阻尼器带动中轴转
动。振子随中轴转动,同时沿中轴进行滑动。扭转弹簧的扭矩与浮子和振子的相对角位移成正
比,比例系数为扭转弹簧的刚度。旋转阻尼器的扭矩与浮子和振子的相对角速度成正比,比例
系数为旋转阻尼器的旋转阻尼系数。考虑浮子只做垂荡和纵摇运动(参见附件 2),建立浮子
与振子的运动模型。初始时刻浮子和振子平衡于静水中,利用附件 3 和附件 4 提供的参数值(波
浪频率取 1.7152 s−1),假定直线阻尼器和旋转阻尼器的阻尼系数均为常量,分别为 10000 N·s/m
和 1000 N·m·s,计算浮子与振子在波浪激励力和波浪激励力矩 cos , cos ( 为波浪激
励力振幅, 为波浪激励力矩振幅, 为波浪频率)作用下前 40 个波浪周期内时间间隔为 0.2
s 的垂荡位移与速度和纵摇角位移与角速度。将结果存放在 result3.xlsx 中。在论文中给出 10 s、
20 s、40 s、60 s、100 s 时,浮子与振子的垂荡位移与速度和纵摇角位移与角速度。

你可能感兴趣的:(数学建模,全国大学生数学建模竞赛,2022国赛数学建模思路,数学建模国赛C题思路)